Основою піраміди MABCD є квадрат , бічне ребро MB перпендикулярне до площини основи піраміди, точна K-середина відрізка CD. укажіть лінійний кут двогранного кута піраміди при ребрі CD Смотрите на рисунок
1) Наверное, все-таки, РАВНЫЕ отрезки, а не РАЗНЫЕ ?..)) По теореме Фалеса параллельные прямые откладывают на сторонах угла пропорциональные отрезки. Так как оба отрезка равны, то прямая, проведенная через концы этого отрезка будет параллельна основанию треугольника и, следовательно, будет перпендикулярна медиане к основанию. Последнее следует из того, что в равнобедренном треугольнике медиана к основанию является также биссектрисой угла при вершине и высотой данного треугольника. Так как данный отрезок перпендикулярен медиане и делится ей пополам так же, как и основание, можно утверждать, что расстояния от концов отрезка до любой точки на медиане будут равны между собой.
2) Так как CED - равнобедренный, то ∠ECD = ∠EDC => ∠ECM = ∠MCD = ∠EDH = ∠HDC Тогда ΔHDC = ΔMCD по стороне и двум углам: (CD - общая, ∠HDC = ∠MCD, ∠HCD = ∠MDC) Отсюда следует, что HC = MD.
В ΔСАН и ΔMAD: HC = MD, ∠HCM = ∠MDA, ∠MAD = ∠HAC => эти треугольники равны по стороне и двум углам
По теореме Фалеса параллельные прямые откладывают на сторонах угла пропорциональные отрезки. Так как оба отрезка равны, то прямая, проведенная через концы этого отрезка будет параллельна основанию треугольника и, следовательно, будет перпендикулярна медиане к основанию. Последнее следует из того, что в равнобедренном треугольнике медиана к основанию является также биссектрисой угла при вершине и высотой данного треугольника.
Так как данный отрезок перпендикулярен медиане и делится ей пополам так же, как и основание, можно утверждать, что расстояния от концов отрезка до любой точки на медиане будут равны между собой.
2) Так как CED - равнобедренный, то ∠ECD = ∠EDC =>
∠ECM = ∠MCD = ∠EDH = ∠HDC
Тогда ΔHDC = ΔMCD по стороне и двум углам:
(CD - общая, ∠HDC = ∠MCD, ∠HCD = ∠MDC)
Отсюда следует, что HC = MD.
В ΔСАН и ΔMAD: HC = MD, ∠HCM = ∠MDA, ∠MAD = ∠HAC =>
эти треугольники равны по стороне и двум углам
7) 90
8) 75 и 105
Объяснение:
7) Так как AD = DC, угол DCA = DAC = 45 (углы при основании AC в равнобедренном треугольнике). Следовательно, угол D = 180 - 45 - 45 = 90.
По свойству параллелограмма противолежащие углы равны, следовательно, угол В = D = 90.
Также сумма соседних углов = 180, следовательно, угол А = 180 - угол D = 180 - 90 = 90.
Угол С = 180 - угол D = 180 - 90 = 90.
8) Угол Р = 90 - угол LKP = 75.
По свойству параллелограмма, противолежащие углы равны, то есть угол N = P = 75.
По свойству параллелограмма сумма соседних углов = 180. То есть:
Угол M = K = 180 - P = 180 - N = 180 - 75 = 105