1. построить равнобедренный треугольник по основанию и биссектрисе, проведенной к основанию.2. постройте прямоугольный треугольник по острому углу и высоте, проведенной к гипотенузе.(подробное решение с рисунком) большое .
Так как ΔАВС равнобедренный, то АВ₁ = В₁С = ВА₁ = А₁С ∠САВ = ∠СВА как углы при основании равнобедренного треугольника, АВ - общая сторона для ΔАВ₁В и ΔВА₁А, значит ΔАВ₁В = ΔВА₁А по двум сторонам и углу между ними, ⇒ АА₁ = ВВ₁. Медианы точкой пересечения делятся в отношении 2 : 1, считая от вершины, значит АО = ОВ. Обозначим АО = ОВ = х. ∠АОВ = 180° - 60° = 120° (смежные) Из ΔАОВ по теореме косинусов: АВ² = AO² + BO² - 2·AO·BO·cos120° 36 = x² + x² - 2 · x · x · (- 1/2) 2x² + x² = 36 3x² = 36 x² = 12 x = √12 = 2√3 АО = 2√3 см - это 2/3 от длины АА₁. Значит АА₁ = 3/2 · АО = 3/2 · 2√3 = 3√3 см
По условию задачи просят найти неизвестную сторону ромба, то есть проведя диагонали мы получили 4 прямоугольных треугольника. гипотенуза равна 12 и один из катетов (высота) 2,4, нам надо найти второй катит, здесь нам Пифагор ищем катет по формуле c2=b2+a2, и остается только подставить 144=5,76+x2, получилось уравнение, но перед тем как его решить необходимо записать его в правильном виде −x2=5,76−144/*(−1) x2=−5,76+144 x2=138,24 /2 x= 69,12 после извлекаем корень из 69,12 и получаем приблезительно 8,3
АВ₁ = В₁С = ВА₁ = А₁С
∠САВ = ∠СВА как углы при основании равнобедренного треугольника,
АВ - общая сторона для ΔАВ₁В и ΔВА₁А, значит
ΔАВ₁В = ΔВА₁А по двум сторонам и углу между ними, ⇒
АА₁ = ВВ₁.
Медианы точкой пересечения делятся в отношении 2 : 1, считая от вершины, значит АО = ОВ.
Обозначим АО = ОВ = х.
∠АОВ = 180° - 60° = 120° (смежные)
Из ΔАОВ по теореме косинусов:
АВ² = AO² + BO² - 2·AO·BO·cos120°
36 = x² + x² - 2 · x · x · (- 1/2)
2x² + x² = 36
3x² = 36
x² = 12
x = √12 = 2√3
АО = 2√3 см - это 2/3 от длины АА₁. Значит
АА₁ = 3/2 · АО = 3/2 · 2√3 = 3√3 см
x2=−5,76+144
x2=138,24 /2
x= 69,12
после извлекаем корень из 69,12 и получаем приблезительно 8,3