1) Постройте координатную плоскость, взяв за единичный отрезок две клетки в тетради. Отметьте на плоскости точки, согласно их координатам: А(3; 0), В(7;0), С(0; 2), D(0; 6), F( - 4; 0), G( - 2; - 7), O (0; 0), N( - 2; 0).
2) С линейки найдите середины отрезков, обозначьте их и запишите координаты: Х(?; ?)- середина отрезка АВ, Е(?; ?) – середина отрезка СD, Н(?; ?) – середина DF, М(?; ?) – середина FG и К(?; ?) – середина АG,
По определению средней линии ее длина равна половине длины параллельного ей основания.
Следовательно, длины оснований трапеции равны:
1,5 х 2 = 3
7,5 х 2 = 15
Площадь трапеции равна произведению полусуммы оснований на высоту: S = (a+b)h/2
Отсюда высота трапеции: h = 2S/(a+b) = 2 x 72 / (15+3) = 8
Так как трапеция является равнобедренной, углы при ее основаниях попарно равны. Высоты, проведенные от верхнего основания к нижнему, делят нижнее основание на три отрезка: 6 + 3 + 6 = 15 (см.рисунок)
Длину боковой стороны найдем по теореме Пифагора из образовавшегося прямоугольного треугольника (боковая сторона - гипотенуза, катеты - высота и часть нижнего основания)
√8²+6² = √100 = 10