Смотри, площадь треугольника равна S=r*P/2, где P-периметр , а r-радиус вписанной окружности. P=ab+(ac+bc)=72, тогда S=240, так же площадь равна корню из(p/2*(p-ab)(p-bc)(p-ac), это формула герона, так как ac + bc =46, а ab = 26, то подставим всё сюда и будет выглядеть так:
240^2=36*(36-26)(36-46+bc)(36-bc) "ac = 46-bc" по условию. после решаем это, раскрыв всё, будет выглядеть так:
bc^2 - 46bc + 520 = 0, где дискриминант равен 36, получим bc = 26 или 20, просто второе значение это ac, ведь 26 + 20 = 46, а это ac+bc, ответ: 20 и 26
Обозначим коэффициент отношения радиусов х Тогда один радиус равен 3х,второй - 5х 3х+5х=16 8х=16 х=2 3х= 6 см - это первы радиус 5х*2=10см - это второй радиус
2)
В четырехугольнике сумма его углов равна 360 градусов. Два угла между касательными и радиусами равны по 90 градусов и сумма их 180 градусов. Угол между касательными равен 180-130 =50 градусов
3)
Треугольник с такими углами - прямоугольный.
Центр описанной окружности лежит на его гипотенузе, и радиус окружности равен половине АВ радиус 10:2=5 см
240^2=36*(36-26)(36-46+bc)(36-bc) "ac = 46-bc" по условию. после решаем это, раскрыв всё, будет выглядеть так:
bc^2 - 46bc + 520 = 0, где дискриминант равен 36, получим bc = 26 или 20, просто второе значение это ac, ведь 26 + 20 = 46, а это ac+bc, ответ: 20 и 26
1)
Обозначим коэффициент отношения радиусов х
Тогда один радиус равен 3х,второй - 5х
3х+5х=16
8х=16
х=2
3х= 6 см - это первы радиус
5х*2=10см - это второй радиус
2)
В четырехугольнике сумма его углов равна 360 градусов.
Два угла между касательными и радиусами равны по 90 градусов и сумма их 180 градусов.
Угол между касательными равен
180-130 =50 градусов
3)
Треугольник с такими углами - прямоугольный.
Центр описанной окружности лежит на его гипотенузе, и радиус окружности равен половине АВ
радиус 10:2=5 см