1.постройте угол, равный 45 градусов. Проведите биссектрису данного угла. 2.Дан треугольник FKP. Постройте точку, равноудалённую от точек F и P и находящуюся на расстоянии 2 см от точки K. Сколько решений может иметь задача?
3. Прямая a пересекает стороны угла DEF. Постройте точку, принадлежащую углу, равноудалённую от его сторон и находящуюся на расстоянии 1,5 см от прямой a. Сколько решений может иметь задача?
1.У окружности бесчисленное множество осей симметрии, , у параллелограмма осей симметрии нет, если это не ромб, прямоугольник или квадрат, у равнобедренной трапеции одна, прямая, проходящая через середины оснований, перпендикулярно им, у квадрата четыре, две средних линии и две прямые, на которых лежат диагонали, у ромба, не являющегося квадратом, две оси, лежащие на диагоналях, которые, как известно, перпендикулярны.
2. При этих видах симметрии расстояние между точками сохраняется, а значит, преобразование симметрии относительно прямой и относительно точки есть движение.
3. а) квадрат, равнобедренная трапеция, прямоугольник, ромб
б) параллелограмм, и все его виды, т.е. ромб, прямоугольник, квадрат.
2)По теореме Пифагора найдём гипотенузу: гипотенуза=√8^2+15^2=√289=17 см. А S прямоугольного треугольника равна половине произведения его катетов, т.е. S треугольника=1/2*(8*15)=60 см^2;
3)За счёт свойства ромба(диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам) получаем прямоугольный треугольник с катетами 6 и 8, в котором надо найти гипотенузу, которая является стороной ромба:гипотенуза=√6^2+8^2=√100=10 см. Теперь найдём S и P данного ромба
S ромба равна половине произведения его диагоналей, т.е. S=1/2*(12*16)=96 см^2
А P ромба можно найти просто умножив значение стороны ромба на 4, т.к. стороны ромба равны, т.е. P ромба = 4*10=40 см.