Позначимо за $R$ радіус кола, описаного навколо рівнобедреного трикутника з кутом при основі $30^\circ$ і бічною стороною $4$ см.
За теоремою про напівкутий, кут при вершині трикутника дорівнює $180^\circ - 2 \cdot 30^\circ = 120^\circ$.
Поділимо цей трикутник на дві рівні частини, провівши серединний перпендикуляр до основи. Оскільки цей перпендикуляр є висотою, то він проходить через центр описаного кола. Позначимо за $O$ центр описаного кола. Тоді відрізок $OA$ є радіусом кола, де $A$ --- середина основи трикутника.
За теоремою синусів в правильному трикутнику $AOB$ маємо:
$$\frac{AB}{\sin \angle AOB} = 2R,$$
де $AB = 2$ см --- медіана (висота) рівнобедреного трикутника, проведена з вершини під кутом $30^\circ$.
Знайдемо $\sin \angle AOB$. Оскільки кут при вершині трикутника дорівнює $120^\circ$, то кут $\angle AOB$ дорівнює $60^\circ$. За теоремою синусів в рівнобедреному трикутнику $ABC$ з кутом при основі $30^\circ$ і бічною стороною $4$ см маємо:
ответ: В соответствии с классическим определением, уго� между векторами, отложенными от одной точки, определяется как кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором. Для заданного варианта углы между векторами могут быть определены из соотношения углов в треугольнике ABC, в котором ∠АСВ=90°, ∠СВА=40°, соответственно ∠САВ=180°-(90°+40°)=50°. Тогда -
- угол между векторами СА и СВ равен ∠АСВ=90°;
- угол между векторами ВА и СА равен ∠САВ=50°;
- угол между векторами СВ и ВА равен ∠САВ+∠АСВ=50°+90°=140°
Відміть як найкраща відповідь :) БУДЬ ЛАСКА
Объяснение:
Позначимо за $R$ радіус кола, описаного навколо рівнобедреного трикутника з кутом при основі $30^\circ$ і бічною стороною $4$ см.
За теоремою про напівкутий, кут при вершині трикутника дорівнює $180^\circ - 2 \cdot 30^\circ = 120^\circ$.
Поділимо цей трикутник на дві рівні частини, провівши серединний перпендикуляр до основи. Оскільки цей перпендикуляр є висотою, то він проходить через центр описаного кола. Позначимо за $O$ центр описаного кола. Тоді відрізок $OA$ є радіусом кола, де $A$ --- середина основи трикутника.
За теоремою синусів в правильному трикутнику $AOB$ маємо:
$$\frac{AB}{\sin \angle AOB} = 2R,$$
де $AB = 2$ см --- медіана (висота) рівнобедреного трикутника, проведена з вершини під кутом $30^\circ$.
Знайдемо $\sin \angle AOB$. Оскільки кут при вершині трикутника дорівнює $120^\circ$, то кут $\angle AOB$ дорівнює $60^\circ$. За теоремою синусів в рівнобедреному трикутнику $ABC$ з кутом при основі $30^\circ$ і бічною стороною $4$ см маємо:
$$\frac{AB}{\sin 60^\circ} = \frac{BC}{\sin 30^\circ} = 4.$$
Отже, $\sin 60^\circ = \frac{AB}{2R}$ і
$$\frac{AB}{\sin \angle AOB} = \frac{AB}{\sin 60^\circ} = 2R.$$
Підставляючи вираз для $AB$ та отриманий вираз для $\sin 60^\circ$, маємо:
$$\frac{2}{\frac{\sqrt{3}}{2}} = 2R,$$
звідки $R = \boxed{\frac{2\sqrt{3}}{3}}$ см.
ответ: В соответствии с классическим определением, уго� между векторами, отложенными от одной точки, определяется как кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором. Для заданного варианта углы между векторами могут быть определены из соотношения углов в треугольнике ABC, в котором ∠АСВ=90°, ∠СВА=40°, соответственно ∠САВ=180°-(90°+40°)=50°. Тогда -
- угол между векторами СА и СВ равен ∠АСВ=90°;
- угол между векторами ВА и СА равен ∠САВ=50°;
- угол между векторами СВ и ВА равен ∠САВ+∠АСВ=50°+90°=140°
Подробнее - на -
Объяснение: