№1. Т. О- центр окружности, AD – диаметр, OF – радиус. Найдите угол AOF, если угол ADF равен 630 №2. В окружности с центром О проведены диаметр AD и хорда DE. Найдите угол AEO, если угол ADE равен 340
1) подобный 2) подобны 3) 48 Пусть например дан параллелограмм ABCD для удобства. Сумма двух углов параллелограмма равна 60 градусам, значит это углы противоположные (потому-что иначе сумма углов прилежащие к одной стороне равны 180 градусов). Пусть угол А плюс угол С равны 60 градусов, тогда каждый из них равен по 30 градусов. Можно найти площадь треугольника ABD, как площадь треугольника равная половине произведения синуса угла (в нашем случае 30 градусов) и длин заключающих его сторон ( в нашем случае 12 и 8) А площадь параллелограмма равна сумме двух таких треугольников (по свойству деления диагонали ромба на два равновеликих (равные по площади) треугольника)
Пусть ABC - прямоугольный треугольник. AB u BC - катеты, AC - гипотенуза. Угол ACB = 60°, тогда угол CAB = 180 - 90 - 60 = 30° Катет BC противолежит углу 30° ⇒ такой катет равен половине гипотенузы. BC = AC/2 BD - высота, опущенная на гипотенузу.
2) подобны
3) 48
Пусть например дан параллелограмм ABCD для удобства. Сумма двух углов параллелограмма равна 60 градусам, значит это углы противоположные (потому-что иначе сумма углов прилежащие к одной стороне равны 180 градусов). Пусть угол А плюс угол С равны 60 градусов, тогда каждый из них равен по 30 градусов. Можно найти площадь треугольника ABD, как площадь треугольника равная половине произведения синуса угла (в нашем случае 30 градусов) и длин заключающих его сторон ( в нашем случае 12 и 8)
А площадь параллелограмма равна сумме двух таких треугольников (по свойству деления диагонали ромба на два равновеликих (равные по площади) треугольника)
Угол ACB = 60°, тогда угол CAB = 180 - 90 - 60 = 30°
Катет BC противолежит углу 30° ⇒ такой катет равен половине гипотенузы. BC = AC/2
BD - высота, опущенная на гипотенузу.
В прямоугольном треугольнике BCD:
СВD= 180 - 90 - 60 = 30°
BC - гипотенуза, СD u BD - катеты, причем СD противолежит углу 30° ⇒ CD = BC/2
По теореме Пифагора
BD² + CD² = BC²
4² + (BC/2)² = BC²
16 + BC²/4 = BC²
16 = 4BC²/4 - BC²/4
3BC²/4 = 16
3BC² = 64
BC² = 64/3
В прямоугольном треугольнике ABD:
AB - гипотенуза, AD u BD - катеты, причем BD противолежит углу 30° ⇒ AB = 2BD = 8
По теореме Пифагора
AB² + BC² = AC²
(2BD)² + 64/3 = AC²
(2 * 4)² + 64/3 = AC²
AC² = 64 + 64/3
AC² = 192/3 + 64/3
AC² = 256/3
AC=√(256/3)
AC = 16/√3
AC = 16√3 / 3 (cм)