1.Точка M делит хорду BA окружности на отрезки 15 и 8, а хорду CD на отрезки, длины которых находятся в отношении 1 : 5. Найдите CD.
2.Точка D делит хорду BC окружности на отрезки 6 и 18, а хорду AK на отрезки, длины которых находятся в отношении 2 : 3. Найдите AK.
3.Радиус окружности равен 25 см. Хорда окружности находится на расстоянии 7 см от центра окружности. Найдите длину этой хорды. ответ дайте в сантиметрах
Так как треугольник равносторонний, то все его стороны равны. АВ=ВС=АС=2√3Биссектриса в равностороннем треугольнике является медианой и высотой. Медиана ВН (она же биссектриса, она же высота) делит треугольник АВС на два треугольника. B AHC Рассмотрим треугольник АВН: Т. к ВН-биссектриса, то угол АВН=30° (т. к в равностороннем треугольнике все углы равны 60°).Треугольник АВН - прямоугольный (т. к ВН еще и высота). По св-ву прямоугольного треугольника, один из углов которого равен 30°:АВ - гипотенуза треугольника АВН. АН - катет, лежащий против угла в 30°.Значит, АН=1/2*АВАН=1/2*2√3АН=√3Теперь, по теореме Пифагора найдем сторону ВН. АВ2=ВН2+АН2(2√3)2=х2+(√3)2(√12)2=х2+312=х2+3 ==> х2=9 х=3ВН=3 см. ответ: ВН=3 см
Т.к. она является и биссектрисой, то угол поделится пополам, т.е. будет равен = 30. Дальше воспользуемся тригонометрией, а именно косинусом (напомню, косинус - отношение прилежащего катета к гипотенузе):
cos 30=√3/2
√3/2=9√3/x
√3х=18√3
х=18 (см) - сторона треугольника.
Если есть желание, можешь расковырять через теорему Пифагора, обозначив второй катет за х, а гипотенузу за 2х. ответ получится абсолютно тот же.