1. У правильной шестиугольной пирамиды отрезали вершину плоскостью, параллельной плоскости основания и проходящей через середину высоты пирамиды. Найдите объём получившегося многогранника, если объём отрезанной части равен 8. 2. Дан конус. Через середину его высоты провели плоскость, параллельную плоскости его основания. Найдите объём конуса, основанием которого является полученное сечение, а вершиной — центр основания данного конуса, если объём данного конуса равен 16. 3. Найдите площадь сечения правильной четырёхугольной пирамиды плоскостью, проходящей через середины трёх её боковых сторон, если сторона основания пирамиды равна 6. 4. Боковая грань правильной треугольной пирамиды образует с основанием угол 45°, а высота пирамиды равна 27. Найдите сторону основания. 5. Дана правильная треугольная призма ABCA1B1C1, точка M — середина ребра BC. Найдите косинус угла AMA1, если боковое ребро CC1 равно 3, а сторона основания равна 3 .
Опустим высоты BH1 и CH2, BH1∩CH2=O, BH1=h1, CH2=h2. Тогда ∠AH1B=∠OH1C=∠CH2A=∠OH2B=90°.
Рассмотрим ΔAH2C. ∠H2СA=180°-90°-45°=45°=∠A(по условию)=> ΔAH2C равнобедренный => AH2=CH2=h2.
Рассмотрим ΔAH1B. ∠H1BA=180°-90°-45°=45°=∠A(по условию)=> ΔAH1B равнобедренный => AH1=BH1=h1.
Рассмотрим четырехугольник AH2OH1. ∠H2OH1=360°-90°-90°-45°=135°. => ∠BOH2=∠COH1=180°-135°=45°.
Рассмотрим ΔBH2O. ∠H2BO=180°-90°-45°=45°=∠BOH2(по доказанному ранее)=> ΔBH2O равнобедренный => BH2=OH2=a.
Рассмотрим ΔCH1O. ∠H1CO=180°-90°-45°=45°=∠COH1(по доказанному ранее)=> ΔCH1O равнобедренный => CH1=OH1=b.
BH1=h1=b+√(BH2²+OH2²)=a√2+b
CH2=h2=a+√(CH1²+OH1²)=a+b√2
Рассмотрим ΔBOC. По неравенству треугольника BC<BO+OC=√(BH2²+OH2²)+√(CH1²+OH1²)=a√2+b√2
Тогда P=AB+BC+AC=h2+a+h1+b+AC<h2+a+h1+b+a√2+b√2=h2+h1+(a+b√2)+(a√2+b)=h1+h2+h1+h2=2(h1+h2)
Ч.т.д.
1) Рассмотрим треугольник МNK:
Сумма углов в любом треугольнике = 180 градусов, тогда:
5х + 9х + 4х = 180
18х = 180
х = 10
Тогда угол MNK = 9*10 = 90 градусов.
угол NMK = 5*10 = 40 градусов.
угол MKN = 4*10 = 50 градусов.
2) Рассмотрим треугольник АВС:
Угол АСВ = 180 - 90 - 40 = 50 градусов.
tgA = BC/AB, следовательно ВС = АВ*tgA = 3*tg40
3) Треугольники АВС и MNK подобные по первому признаку. Значит:
АВ/KN = BC/NM = AC/KM = 3/9 = 1/3 (коэффициент подобия)
4) Отношение площадей подобных треугольников равно квадрату коэффициента подобия, следовательно:
Sabc / Smnk = (1/3)^2 = 1/9.
5) Отношение периметров подобных треугольников равен коэффициенту подобия, т. е.:
Pabc / Pmnk = 1/3.
Объяснение: