1)В АКМР стороны KM = 1 см, КР = см, ZP = 30°. Найдите ZM. A) 45°; Б) 45° или 135°; B) 60°; Г)решений нет. 2)Найдите наименьшую высоту треугольника, стороны которого равны 13 см, 20 см и 21 см.
Это прямоугольные треугольники, т.к. углы ∠КSO=∠KPO=90° (как углы между касательной к окружности и радиусом, проведенным в точку касания - по определению касательной). У этих прямоугольных треугольников равны гипотенузы (они просто совпадают. Это - отрезок ОК), и один из катетов (как радиусы окружности r). Следовательно по условию соответственного равенства гипотенузы и одного из катетов, прямоугольные треугольники равны:
Δ KOS ≡ Δ KOP
У равных треугольников соответствующие углы равны. Следовательно:
∠SKO = ∠PKO следовательно отрезок KO - бисектрисса ∠SKP .
Значит ∠SKO = ∠PKO=60/2=30°.
У прямоугольного треугольника катет, лежащий против угла 30° равен полвине гипотенузы (KO). Против угла ∠SKO (или ∠PKO) лежит катет, равный радиусу окружности r, значит:
l r l=6.5 (см)
Объяснение:
Смотрим чертеж:
Это прямоугольные треугольники, т.к. углы ∠КSO=∠KPO=90° (как углы между касательной к окружности и радиусом, проведенным в точку касания - по определению касательной). У этих прямоугольных треугольников равны гипотенузы (они просто совпадают. Это - отрезок ОК), и один из катетов (как радиусы окружности r). Следовательно по условию соответственного равенства гипотенузы и одного из катетов, прямоугольные треугольники равны:
Δ KOS ≡ Δ KOP
У равных треугольников соответствующие углы равны. Следовательно:
∠SKO = ∠PKO следовательно отрезок KO - бисектрисса ∠SKP .
Значит ∠SKO = ∠PKO=60/2=30°.
У прямоугольного треугольника катет, лежащий против угла 30° равен полвине гипотенузы (KO). Против угла ∠SKO (или ∠PKO) лежит катет, равный радиусу окружности r, значит:
l r l=l KO l/2
l r l=13/2=6.5 (см)
PA/KA ⇒ KA = 3PA
По свойству пересекающихся хорд :
PA * KA = NA * MA
PA * 3PA = 16 * 3
PA² = 16 ⇒ PA = 4 см
KA = 3PA = 3*4 = 12 см
PK = PA + KA = 4+12 = 16 см
Самая большая хорда в любой окружности - это диаметр. Поэтому диаметр не может быть меньше любой из хорд, проведенных в окружности.
В данной окружности проведено 2 хорды:
MN = MA + NA = 3 + 16 = 19 см
PK = 16 см
Значит, наименьшее значение диаметра не может быть меньше 19 см.
Тогда наименьший радиус равен 19 : 2 = 9,5 см
ответ: РК = 16 см; наименьший радиус 9,5 см.