1.В кубе ABCDA1B1C1D1 точка М – середина А1В1, N – середина В1С1, К – середина АD, Р – середина DC. Определить взаимное расположение плоскостей
а) MNK и MNP;
б) А1В1С1 и АDC.
2.В кубе ABCDA1B1C1D1 точка М – середина А1В1, N – середина В1С1, К – середина АD, Р – середина DC. Определить взаимное расположение плоскостей
а) MKP и BB1D;
б) D1KP и BMN.
3. В кубе ABCDA1B1C1D1 точка М – середина А1В1, К – середина АD, Р – середина DC. Определить взаимное расположение плоскостей
а) A1DC1 и AB1C;
б) АС1С и МКР
Найдём угол BAC:
BAC = 180° - (30° + 105°) = 180° - 135° = 45°
По теореме синусов найдём сторону AC:
(BC)/(sinBAC) = (AC)/(sinABC);
(3√2)/(√2/2) = (AC)/(1/2);
AC = (3√2 * 1/2)/(√2/2) = 3√2 * 1/2 * 2/√2 = (3√2)/(√2) = 3 см
По той же теореме синусов найдём сторону AB:
(AC)/(sinABC) = (AB)/(sinBCA);
sin105° = sin(50+50+5) = 0.766 + 0.766 + 0.0871 = 1.6191
(3)/(1/2) = (AB)/(1.6191);
AB = (3 * 1.6191)/(1/2) = 3 * 1.6191 * 2 = 9.7146 ≈ 10 см
ответ: угол BAC = 45°; AC = 3 см; AB = 10 см