1. В основании пирамиды Хеопса – квадрат со стороной 230м, тангенс угла наклона боковой грани к основанию равен 1,2. Найти высоту самой высокой египетской пирамиды, если основание ее лежит в центре квадрата.
2. Боковое ребро правильной четырехугольной пирамиды составляет с плоскостью основания угол 45°. Найдите площадь боковой поверхности пирамиды, если сторона основания равна а.
3.Найдите площадь полной поверхности правильной треугольной пирамиды, если ее апофема равна 4 см, а угол между апофемой и высотой пирамиды равен 30°.
АВ ВС АС
5 7.0710678 5
х у z
Вектор АВ -3 0 -4
Вектор ВС 7 0 1
Вектор АС 4 0 -3.
Косинус угла равен:
Подставив координаты векторов, находим:
cos радиан градусов
< ABC 0.707107 0.78539816 45
< BCA 0.707107 0.78539816 45
< CAB 0 1.57079633 90
2рисунок
В Δ АМВ:∠М=45°,АВ =10,∠В=90°
по теореме(в прямоугольном Δ сумма острых ∠=90°)
∠А=45° =>Δ АМВ-равноб.(МВ=АВ=10)
3 рисунок
В Δ АМВ:∠М=90°,АВ=15,∠А=∠В=45°(в прямоугольном Δ сумма острых ∠=90°)
Проведем МН⊥АВ-высота,бисс,медиана АН=НВ=15:2
ΔАМН:∠Н=90°,∠А=∠М=45°=>равноб.(АН=МН=7.5)
4рисунок
В Δ АМВ:∠М=90°,∠В=60°
по теореме(в прямоугольном Δ сумма острых ∠=90°)
∠А=30°
Проведем МН⊥АВ
Рассмотрим ΔАМН:∠Н=90°,∠А=30°
по т МН=1:2*АМ
АМ=8(по усл.)
МН=4
1рисунок
В Δ АМВ:∠М=60°,АМ =30,∠В=90°
по теореме(в прямоугольном Δ сумма острых ∠=90°)
∠А=З0°
по т МВ=1:2*АМ
МВ=15