1). Все двугранные углы при боковых гранях прямой призмы... 2). Правильная четырёхугольная призма, высота которой равна стороне основания является... 3). Линия пересечения двух диагональных сечений куба ... двум его граням
По условию АВ=14, АС=16, ВС=10 В любом треугольнике против наибольшего угла лежит наибольшая сторона, а против наименьшего угла лежит наименьшая сторона. Значит в нашем треугольнике минимальным углом является угол А.
Теорема косинусов. Квадрат любой стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними. BC²= AB² + AC² – 2AB · AC cos ∠А. 10²=14²+16²-2*14*16 cos ∠А 100=196+256-448cos ∠А 448cos ∠А=196+256-100 448cos ∠А=352 cos ∠А=352/448 cos ∠А=11/14 По таблице косинусов ∠А≈38°
Рассмотрим один из двух треугольников, полученных при проведении диагонали в боковой грани параллелепипеда:
Треугольник прямоугольный т.к. параллелепипед прямой, по этой же причине один из острых углов равен 30°; гипотенуза (диагональ боковой грани) равна 8см; катет лежащий напротив угла в 30° (боковое ребро) равен половине гипотенузы: 8см:2 = 4см; другой катет (сторона основания), по теореме Пифагора, равен √(8²-4²) = √(64-16) = √48 см.
Объём параллелепипеда можно найти через его высоту (в нашем случаи это и боковое ребро) и площадь основания. В основании лежит квадрат, поэтому его площадь равна (√48 см)² = 48 см².
В любом треугольнике против наибольшего угла лежит наибольшая сторона, а против наименьшего угла лежит наименьшая сторона.
Значит в нашем треугольнике минимальным углом является угол А.
Теорема косинусов. Квадрат любой стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними.
BC²= AB² + AC² – 2AB · AC cos ∠А.
10²=14²+16²-2*14*16 cos ∠А
100=196+256-448cos ∠А
448cos ∠А=196+256-100
448cos ∠А=352
cos ∠А=352/448
cos ∠А=11/14
По таблице косинусов ∠А≈38°
Рассмотрим один из двух треугольников, полученных при проведении диагонали в боковой грани параллелепипеда:
Треугольник прямоугольный т.к. параллелепипед прямой, по этой же причине один из острых углов равен 30°; гипотенуза (диагональ боковой грани) равна 8см; катет лежащий напротив угла в 30° (боковое ребро) равен половине гипотенузы: 8см:2 = 4см; другой катет (сторона основания), по теореме Пифагора, равен √(8²-4²) = √(64-16) = √48 см.
Объём параллелепипеда можно найти через его высоту (в нашем случаи это и боковое ребро) и площадь основания. В основании лежит квадрат, поэтому его площадь равна (√48 см)² = 48 см².
Тогда объём равен 4см · 48см² = 192 см³
ответ: 192см³.