1. Why did people stay in their homes as much as possible? 2. How did “Bow Street Runners” get their name?
Choose True or False.
3. In 1800, there were not enough policemen in London.
4. All of the first 3000 London Police Force rode horses.
5. Today, police officers who work with horses are paid more than their colleagues
у меня СОЧ
на сторонах BC, AC и AB соответственно. Отрезки
пересекаются в одной точке тогда и только тогда, когда
Лемма. Если числа таковы, что
то
,
лишь бы знаменатель в ноль не обращался.
Доказательство леммы. Оно элементарно. Кстати, те, кто в первый раз видит эту лемму, очень часто реагируют так: "Вы что же, числители и знаменатели складываете?! У нас в школе за это двойки ставят!" Впрочем, присмотревшись к утверждению и убедившись, что мы не собираемся таким образом дроби складывать, обычно все успокаиваются, особенно разобравшись в доказательстве.
Обозначим общее значение дробей и
буквой
Тогда
что и требовалось доказать.
Чтобы эта лемма стала совсем очевидной, хочется привести еще и то, что я иногда называю ПОКАЗАТЕЛЬСТВОМ, то есть рассуждение, не претендующее на роль строгого рассуждения, но приблизиться к "кухне математика". Итак, представьте две карты некой местности в разных масштабах, a - это расстояние между пунктами D и E, b - между E и F на одной карте, b и d - аналогичные расстояния на другой карте. В этом случае - это отношение масштабов карт. Ясно, что если мы сложим a и c, то получим длину маршрута от первого пункта через второй к третьему на первой карте, а сложив b и d - длину маршрута на второй карте. Понятно, что их отношение снова равно отношению масштабов карт.
Доказательство теоремы.
1. Пусть указанные отрезки пересекаются в точке , тогда треугольник оказывается разбит на 6 треугольников, занумерованных так, как указано на чертеже. Рассмотрим первую дробь
Поскольку числитель и знаменатель этой дроби являются основаниями треугольников и с общей высотой, дробь не изменится, если заменить числитель и знаменатель на площади указанных треугольников. А заметив, что на тех же основаниях стоят треугольники
и , можно заменить числитель и знаменатель и на их площади.
Поэтому
Воспользуемся теперь леммой: дроби не изменятся, если взять разность числителей и разность знаменателей:
Проведя аналогичное рассуждение для двух других дробей, получаем:
что и доказывает теорему Чевы в одну сторону.
2. Пусть не пересекаются в одной точке.Проведем через точку пересечения и
отрезок (точка расположена на стороне ).
По доказанному,
Если бы было выполнено
,
то
что невозможно при
(скажем, если точки на стороне
расположены в порядке
то числитель первой дроби больше числителя второй дроби, а знаменатель первой дроби меньше знаменателя второй, значит, первая дробь больше второй).
На этом доказательство завершается.
Замечание. Нетрудно получить тригонометрическую форму теоремы Чевы.
Воспользуемся для этого теоремой синусов:
Аналогично получаем
Отсюда получается новая формулировка теоремы Чевы.
Отрезки пересекаются в одной точке тогда и только тогда, когда
Примеры.
1) Медианы пересекаются в одной точке, поскольку все три дроби в основной формулировке теоремы Чевы равны 1.
2) Биссектрисы пересекаются в одной точке. Здесь удобнее воспользоваться теоремой Чевы в тригонометрической форме.
3) Высоты в остроугольном треугольнике пересекаются в одной точке. Опять легче воспользоваться тригонометрической формой.
Это означает, что если перегнуть плоскость по прямой FK то точка D и O совпадут. Соединим точку D с точками F и K , отрезки DF=FO=OK=KD
тк FO = OK (это одно из свойств диагоналей прямоугольника), DF=FO тк точка D является симметричной точке О относительно прямой FK, и отрезки проведенные из какой-то точки этой прямой к точкам D или F будут равны. А так как у ромба все стороны равны , то фигура FOKD - РОМБ.
Периметр.
Диагонали ромба равны 8 см и 6 см (по причине симметрии двух точек Д и О)
Формула диагоналей через сторону и другую диагональ D-большая диагональ d-меньшая диагональ
Возведу всё в квадрат
P=4a=4*5=20