В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
ksenia7567012
ksenia7567012
16.05.2023 00:24 •  Геометрия

1. Why did people stay in their homes as much as possible? 2. How did “Bow Street Runners” get their name?
Choose True or False.
3. In 1800, there were not enough policemen in London.
4. All of the first 3000 London Police Force rode horses.
5. Today, police officers who work with horses are paid more than their colleagues
у меня СОЧ ​

Показать ответ
Ответ:
нмрмгштщ
нмрмгштщ
06.03.2020 12:33
Теорема Чевы. Дан треугольник ABC и точки A_1, \ B_1, \ C_1
на сторонах BC, AC и AB соответственно. Отрезки 
AA_1,\ BB_1,\ CC_1 пересекаются в одной точке тогда и только тогда, когда

\frac{AB_1}{B_1C}\cdot \frac{CA_1}{A_1B}\cdot \frac{BC_1}{C_1A}=1

Лемма. Если числа a,\ b,\ c,\ d таковы, что 
\frac{a}{b}=\frac{c}{d},
то

\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{a-c}{b-d}=
 \frac{2a+3c}{2b+3d}=\ldots =
 \frac{\lambda a+\mu c}{\lambda b+\mu d},

лишь бы знаменатель в ноль не обращался.

Доказательство леммы. Оно элементарно. Кстати, те, кто в первый раз видит эту лемму, очень часто реагируют так: "Вы что же, числители и знаменатели складываете?! У нас в школе за это двойки ставят!" Впрочем, присмотревшись к утверждению и убедившись, что мы не собираемся таким образом дроби складывать, обычно все успокаиваются, особенно разобравшись в доказательстве.

Обозначим общее значение дробей \frac{a}{b} и
\frac{c}{d} буквой t.
Тогда 

a=bt;\ c=dt\Rightarrow \lambda a+\mu c
= (\lambda b+ \mu d)t\Rightarrow



\frac{\lambda a+\mu b}{\lambda b+\mu d}=t,

что и требовалось доказать.

Чтобы эта лемма стала совсем очевидной, хочется привести еще и то, что я иногда называю ПОКАЗАТЕЛЬСТВОМ, то есть рассуждение, не претендующее на роль строгого рассуждения, но приблизиться к "кухне математика". Итак, представьте две карты некой местности в разных масштабах, a - это расстояние между пунктами D и E, b - между E и F на одной карте, b и d - аналогичные расстояния на другой карте. В этом случае \frac{a}{b}=\frac{c}{d} - это отношение масштабов карт. Ясно, что если мы сложим a и c, то получим длину маршрута от первого пункта через второй к третьему на первой карте, а сложив b и d - длину маршрута на второй карте. Понятно, что их отношение снова равно отношению масштабов карт.

Доказательство теоремы.

1. Пусть указанные отрезки пересекаются в точке P, тогда треугольник ABC оказывается разбит на 6 треугольников, занумерованных так, как указано на чертеже.  Рассмотрим первую дробь
\frac{AB_1}{B_1C}.
Поскольку числитель и знаменатель этой дроби являются основаниями треугольников ABB_1 и B_1BC с общей высотой, дробь не изменится, если заменить числитель и знаменатель на площади указанных треугольников. А заметив, что на тех же основаниях стоят треугольники
APB_1 и B_1PC, можно заменить числитель и знаменатель и на их площади. 

Поэтому

\frac{AB_1}{B_1C}=
\frac{S_I+S_{II}+S_{III}}{S_{IV}+S_{V}+S_{VI}}=
\frac{S_I}{S_{VI}}.



Воспользуемся теперь леммой: дроби не изменятся, если взять разность числителей и разность знаменателей:

\frac{AB_1}{B_1C}=\frac{S_{II}+S_{III}}{S_{IV}+S_{V}}

Проведя аналогичное рассуждение для двух других дробей, получаем:

\frac{AB_1}{B_1C}\cdot \frac{CA_1}{A_1B}\cdot \frac{BC_1}{C_1A}=
\frac{S_{II}+S_{III}}{S_{IV}+S_{V}}\cdot 
\frac{S_{VI}+S_{I}}{S_{II}+S_{III}}\cdot
\frac{S_{IV}+S_{V}}{S_{VI}+S_{I}}=1,

что и доказывает теорему Чевы в одну сторону.

2. Пусть AA_1, BB_1, CC_1 не пересекаются в одной точке.Проведем через точку пересечения AA_1 и 
BB_1 отрезок CC_2 (точка C_2 расположена на стороне AB). 
По доказанному,

\frac{AB_1}{B_1C}\cdot\frac{CA_1}{A_1B}\cdot\frac{BC_2}{C_2A}=1.

Если бы было выполнено

\frac{AB_1}{B_1C}\cdot\frac{CA_1}{A_1B}\cdot \frac{BC_1}{C_1A}=1,

то 

\frac{BC_2}{C_2A}=\frac{BC_1}{C_1A},

что невозможно при C_1\not= C_2

(скажем, если точки на стороне AB
расположены в порядке A \ - \ C_1\ - C_2\ - B,
то числитель первой дроби больше числителя второй дроби, а знаменатель первой дроби меньше знаменателя второй, значит, первая дробь больше второй).

На этом доказательство завершается.
 
Замечание. Нетрудно получить тригонометрическую форму теоремы Чевы. 
Воспользуемся для этого теоремой синусов:

\frac{AB_1}{\sin \beta_1}=\frac{AB}{\sin AB_1B};\ \
\frac{B_1C}{\sin \beta_2}=\frac{BC}{\sin CB_1B}\Rightarrow

\frac{AB_1}{B_1C}=\frac{AB}{BC}\cdot \frac{\sin \beta_1}{\sin \beta_2}.

Аналогично получаем

\frac{CA_1}{A_1B}=\frac{AC}{AB}\cdot \frac{\sin\alpha_1}{\sin \alpha_2}; \ \
\frac{BC_1}{C_1A}=\frac{BC}{AC}\cdot \frac{\sin \gamma_1}{\sin \gamma_2}.

Отсюда получается новая формулировка теоремы Чевы.

Отрезки AA_1, \ BB_1, \ CC_1 пересекаются в одной точке тогда и только тогда, когда 

\frac{\sin \alpha_1}{\sin \alpha_2}\cdot 
\frac{\sin \beta_1}{\sin\beta_2}\cdot
\frac{\sin \gamma_1}{\sin\gamma_2}=1

Примеры.

1) Медианы пересекаются в одной точке, поскольку все три дроби в основной формулировке теоремы Чевы равны 1.

2) Биссектрисы пересекаются в одной точке. Здесь удобнее воспользоваться теоремой Чевы в тригонометрической форме.

3) Высоты в остроугольном треугольнике пересекаются в одной точке. Опять легче воспользоваться тригонометрической формой.

Теорема чевы. доказательство теоремы. пример использования. четкий, понятный и читаемый рисунок.
Теорема чевы. доказательство теоремы. пример использования. четкий, понятный и читаемый рисунок.
0,0(0 оценок)
Ответ:
angelinalitvine
angelinalitvine
15.11.2020 12:58
"Точка D симметрична точке относительно стороны FK" 
Это означает, что если перегнуть плоскость по прямой FK то точка D и O совпадут. Соединим точку D с точками F и K , отрезки DF=FO=OK=KD
тк FO = OK (это одно из свойств диагоналей прямоугольника), DF=FO тк точка D является симметричной точке О относительно прямой FK, и отрезки проведенные из какой-то точки этой прямой к точкам D или F будут равны. А так как у ромба все стороны равны , то фигура FOKD - РОМБ.
Периметр. 
Диагонали ромба равны 8 см и 6 см (по причине симметрии двух точек Д и О)
Формула диагоналей через сторону и другую диагональ D-большая диагональ  d-меньшая диагональ 
d= \sqrt{4a^2-D^2}
D= \sqrt{4a^2-d^2} [/tex [tex]6= \sqrt{4a^2-8^2}
Возведу всё в квадрат36=4a^2-64
a^2= \frac{36+64}{4} =25
a= \sqrt{25} =5
P=4a=4*5=20
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота