1. Знайдіть координати точки, що симетрична точці (-2;1) відносно
початку координат.
А) (2;-1) Б) (-2;-1) В) (1;-2) Г) (-2;1)
2. Знайдіть координати точки, що симетрична точці (3;-5) відносно осі
ОХ.
А) (-3;-5) Б) (3;5) В) (-3;5) Г) (-5;3)
3. Паралельний перенесення задається формулами: .
В яку точку при такому перенесенні перейде точка А(2;0)?
А) (-1;1) Б) (3;1) В) (-3;3) Г) (5;-1).
4. В яку фігуру при повороті навколо точки О на кут 60° за рухом
стрілки годинника перейде відрізок?
А) у промінь; Б) у відрізок; В) у пряму; Г) встановити неможна.
5. Перетворення подібності з коефіцієнтом k=2 переводить відрізок
довжиною 10 см в інший відрізок. Знайдіть довжину отриманого
відрізка.
А) 10 см; Б) 5 см; В) 20 см; Г) 12 см.
Сумма 4-х углов четырехугольника равна 360. Поскольку в паралелограмме противоположные углы равны, значит сумма двух соседних углов равна 180. Отнимаем 46 и делим на 2, получаем один угол 67, второй (+46) равен 113.
можно так:
Такие углы не могут быть противолежащими, так как они не равны. Значит, они прилежащие и их сумма равна 180°. Пусть один из углов равен х, тогда другой равен х+46°, по условию. Следовательно х+(х+46)=180
2х+46=180
2х=180-46
2х=134
х=67-первый,а второй х+46°=67+46=113 градусов
Древнеегипетская астрономия уходит в глубокую старину: египтяне были одними из первых, кто вёл наблюдения звёздного неба; авторы МЭСБЕ ставят их астрономию в один ряд с китайской[en], индийской и вавилонской (халдеи)[1]. В Египте и общавшихся с ним странах установился довольно точный определения времени года посредством гелиакического восхода звезды Сириус, — летосчисление глубокой древности. Служа для определения времени года, восход или заход определённой звёзды мог служить также и для оценки часа ночи[2]. Египтяне первыми определили год в 365 дней и 6 часов[3].
Для египтян разлив священной реки Нил — земного отражения небесного Млечного Пути[4] — всегда совпадал с восходом Сириуса[5]. Появление Сириуса повторяется через правильные промежутки времени, а именно через каждые 365 1/4 дней[6]. Каждые четыре года Сириус восходил днём позже, из-за чего через 365 х 4 = 1460 лет разница между гражданским календарём (360 дней + пять дней-эпагоменов) и солнечным годом достигала целого года[5], который и прибавлялся к 1460 годам, образуя цикл из 1461 солнечного года[6]. Весь 1461-й год сириусного цикла (сотического[en] — по греческому именованию звезды) считался одним днём Сириуса и превращался в годовой праздник египетского народа[7]. Также каждый восход Сириуса сопровождался известными празднествами, хотя и не приходился на день гражданского Нового года. В древнеегипетских надписях сохранились данные о восходе Сириуса.[5]
Библейское Пятикнижие, переданное египетским жрецом Моисеем (ок. XV века до н. э.), включает космогонические знания. Греческая античная астрономия (VI век до н. э. — V век н. э.) стала плодом учёных мужей, обучавшихся у египетских жрецов (Фалес, Пифагор, Демокрит, Аристарх, Евдокс и др.)[3]