1) Градусная мера полного угла равна 360* Найдем град. меру данного нам угла: 360/3=120* Угол в 120* тупой(больше 90*) отсюда следует, что нам дан тупоугольный треугольник. 2) Сумма углов в любом треугольнике равна 180* Определим на сколько частей ее разделили: 5+7+3=15 частей найдем одну часть 180/15=12* N=12*5=60* B=12*3=36* G=12*7=84* 3) Сумма углов в любом треугольнике равна 180* Угла при основании р.б равны (180-77)/2=51.5* - угол напротив основания 4) Сумма углов в любом треугольнике равна 180* Угла при основании р.б равны 52*2= 104* - градусная мера обоих углов при основании 180-104=76* угол напротив основания 5) Сумма углов в любом треугольнике равна 180* С=180-32-60=88* 6) Сумма острых углов в прямоугольном треугольнике равна 90* 90-81=9* - второй острый угол 7) если в треугольнике есть тупой угол(больше 90*), то он тупоугольный 106*>90* - отсюда следует , что наш треугольник тупоугольный
А) Окружность, вписанная в ∆ABC, будет являться описанной для ∆MPK. У равностороннего треугольника радиус описанной окружности равен R = a√3/3, а радиус вписанной - r = a√3/6. Тогда R/r = 2. Значит, радиусы описанных окружностей около ∆ABC и ∆MPK будут относиться как 2:1.
б) ∆MPK - это треугольник, образованный средними линиями => его периметр будет равен половине периметра ∆ABC. Кроме этого, ∆ABC~∆MPK и отсюда следует, что SABC/SMPK = k² = (1/2)² = 1/4. Радиус вписанной окружности находится по формуле: r = 2S/P, где S - площадь треугольника, P - периметр треугольника. Пусть r1 - радиус вписанной окружности в ∆ABC, r2 - в ∆MPK, S - площадь ∆MPK r1 = 2•4S/2•3a = 8S/6a = 4S/3a r2 = 2S/3a = 2S/3a r1/r2 = 2/1 = 2:1. ответ: а) 2:1; б) 2:1.
Градусная мера полного угла равна 360*
Найдем град. меру данного нам угла:
360/3=120*
Угол в 120* тупой(больше 90*) отсюда следует, что нам дан тупоугольный треугольник.
2)
Сумма углов в любом треугольнике равна 180*
Определим на сколько частей ее разделили:
5+7+3=15 частей
найдем одну часть
180/15=12*
N=12*5=60*
B=12*3=36*
G=12*7=84*
3)
Сумма углов в любом треугольнике равна 180*
Угла при основании р.б равны
(180-77)/2=51.5* - угол напротив основания
4)
Сумма углов в любом треугольнике равна 180*
Угла при основании р.б равны
52*2= 104* - градусная мера обоих углов при основании
180-104=76* угол напротив основания
5)
Сумма углов в любом треугольнике равна 180*
С=180-32-60=88*
6)
Сумма острых углов в прямоугольном треугольнике равна 90*
90-81=9* - второй острый угол
7)
если в треугольнике есть тупой угол(больше 90*), то он тупоугольный
106*>90* - отсюда следует , что наш треугольник тупоугольный
У равностороннего треугольника радиус описанной окружности равен R = a√3/3, а радиус вписанной - r = a√3/6. Тогда R/r = 2. Значит, радиусы описанных окружностей около ∆ABC и ∆MPK будут относиться как 2:1.
б) ∆MPK - это треугольник, образованный средними линиями => его периметр будет равен половине периметра ∆ABC. Кроме этого, ∆ABC~∆MPK и отсюда следует, что SABC/SMPK = k² = (1/2)² = 1/4.
Радиус вписанной окружности находится по формуле:
r = 2S/P, где S - площадь треугольника, P - периметр треугольника.
Пусть r1 - радиус вписанной окружности в ∆ABC, r2 - в ∆MPK, S - площадь ∆MPK
r1 = 2•4S/2•3a = 8S/6a = 4S/3a
r2 = 2S/3a = 2S/3a
r1/r2 = 2/1 = 2:1.
ответ: а) 2:1; б) 2:1.