100 ТГ-нің не 50 тг-нің немесе өзге шаблонның көмегімен шеңбер сызып, оның центрін көз мөлшерімен анықтаңдар. Егер сызылған шеңбер центрі көрсетілмесе, онда центрдің ор- нын қалай табуға болатынын түсіндіріп көріңдер.
Контрольный тест по теме: "Прямоугольные треугольники. Построение треугольника по трем элементам"
Система оценки: 5 балльная
Список во теста
Во Найдите углы треугольников, на которые медиана разбивает равносторониий треугольник.
Варианты ответов
определить невозможно
60°,40°,80°
60°,45°,45°
60°,30°,90°
Во Найдите сумму внешних углов треугольника, взятых по одному при каждой вершине.
Варианты ответов
определить невозможно
270°
360°
180°
Во Концы хорды окружности соединены с центром. Найдите углы получившегося треугольника, если один из них на 36 градусов больше другого. Рассмотрите все случаи.
Варианты ответов
48°,48°,84° или 38°,71°,71°
48°,48°,84° или 36°,72°,72°
78°,60°,42° или 48°,48°,84°
38°,71°,71° или 36°,72°,72°
Во Варианты ответов
KM < MN
KN = MN
MK = MN
MK > KN
KN + KM > MN
Во Одна из сторон равнобедренного треугольника на 12 см меньше другой. Найдите стороны треугольника, если его периметр равен 33 см. Рассмотрите все случаи.
Варианты ответов
13 см, 13 см, 7 см или 7 см, 7 см, 19 см.
3 см, 15 см, 15 см
3 см, 15 см, 15 см или 7 см, 7 см, 19 см
7 см, 7 см, 19 см
Во Варианты ответов
⊿ ABC - разносторонний
∠ KLM=90° ⇒KL ∥ BC
∠ BCO внешний угол ⊿ ABC
∠ DKN внешний угол ⊿ KLM
⊿ ABC - равнобедренный
⊿ ABC - тупоугольный
⊿ ABC - прямоугольный
Во Варианты ответов
BC и MO
нет параллельных отрезков
BA и OK
Во Во Определите вид треугольника по углам и стоорнам, если его углы относятся как:
2)Трикутники АВВ1 і АСС1 подібні за трьома кутами ( два при паралельних прямих і третій А спільний) отже
АС/АВ=СС1/ВВ1=11/(9+11) звідси
ВВ1=20*СС1/11=20*8,1/11=162/11
3)Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость.
В нашем случае проекциями данного нам отрезка на плоскости - это отрезки, соединяющие концы данного отрезка на плоскости и перпендикуляра, опущенного на данную плоскость.Но плоскости перпендикулярны, значит эти перпендикуляры - это расстояния от концов отрезка до линии пересечения плоскостей. То есть проекцией отрезка АВ на плоскость α будет отрезок АВ1,а углом между отрезком АВ и плоскостью α будет угол ВАВ1. Соответственно проекцией отрезка АВ на плоскость β будет отрезок ВА1,а углом между отрезком АВ и плоскостью β будет угол АВА1.
Синус угла ВАВ1 равен отношению противолежащего катета ВВ1 к гипотенузе AB, то есть Sin(ВАВ1)=12/24=1/2. Значит угол между отрезком АВ и плоскостью α равен 30°.
Синус угла АВА1 равен отношению противолежащего катета АА1 к гипотенузе AB, то есть Sin(АВА1)=12√2/24=√2/2. Значит угол между отрезком АВ и плоскостью α равен 45°.
ответ: Углы, образованные отрезком с плоскостями равны 30° и 45°.
4)находим высоту, проведенную к стороне 14
она равна 12( можно найти через формулу Герона площадь, а затем поделить на половину стороны 14см)
ну а дальше расстояние равно гипотенузе с катетами 12 и 16 и равна 20см
5)1. Проведем перпендикуляры из точек С и Д на АВ. Обозначим их СК и ДКПо условию
угол СКД=45.
2. Из треуг. АВС СК - высота правильного треугольника
СК=АВ*sqrt {3}/2=6
3. В треуг. АВД ДК - высота, опущенная на основание равнобедренного треугольника. Как известно, она совпадает с медианой.
АК= АВ/2= 2sqrt {3}
Из прямоуг. трег. АКД по теореме Пифагора
ДК= sqrt ( АД^2-АК^2)= sqrt( 14-12)= sqrt2
4 В треугольнике СКД СК=6, СД=sqrt2 . Угол СКД= 45
Єтот тест
Контрольный тест по теме: "Прямоугольные треугольники. Построение треугольника по трем элементам"
Система оценки: 5 балльная
Список во теста
Во Найдите углы треугольников, на которые медиана разбивает равносторониий треугольник.
Варианты ответов
определить невозможно
60°,40°,80°
60°,45°,45°
60°,30°,90°
Во Найдите сумму внешних углов треугольника, взятых по одному при каждой вершине.
Варианты ответов
определить невозможно
270°
360°
180°
Во Концы хорды окружности соединены с центром. Найдите углы получившегося треугольника, если один из них на 36 градусов больше другого. Рассмотрите все случаи.
Варианты ответов
48°,48°,84° или 38°,71°,71°
48°,48°,84° или 36°,72°,72°
78°,60°,42° или 48°,48°,84°
38°,71°,71° или 36°,72°,72°
Во Варианты ответов
KM < MN
KN = MN
MK = MN
MK > KN
KN + KM > MN
Во Одна из сторон равнобедренного треугольника на 12 см меньше другой. Найдите стороны треугольника, если его периметр равен 33 см. Рассмотрите все случаи.
Варианты ответов
13 см, 13 см, 7 см или 7 см, 7 см, 19 см.
3 см, 15 см, 15 см
3 см, 15 см, 15 см или 7 см, 7 см, 19 см
7 см, 7 см, 19 см
Во Варианты ответов
⊿ ABC - разносторонний
∠ KLM=90° ⇒KL ∥ BC
∠ BCO внешний угол ⊿ ABC
∠ DKN внешний угол ⊿ KLM
⊿ ABC - равнобедренный
⊿ ABC - тупоугольный
⊿ ABC - прямоугольный
Во Варианты ответов
BC и MO
нет параллельных отрезков
BA и OK
Во Во Определите вид треугольника по углам и стоорнам, если его углы относятся как:
Варианты ответов
разносторонний
равнобедренный
равнобедренный
остроугольный
прямоугольный
тупоугольный
равносторонний
Получите комплекты видеоуроков
Биология 7 класс. Позвоночные животные
Обществознание 7 класс ФГОС
Введение в общую биологию и экологию 9...
Химия 9 класс ФГОС
Мир мультимедиатехнологий 6 класс
Электронная тетрадь по информатике 5...
Алгебра 8 класс ФГОС
Электронная тетрадь по ОБЖ 5 класс
1)г
2)Трикутники АВВ1 і АСС1 подібні за трьома кутами ( два при паралельних прямих і третій А спільний) отже
АС/АВ=СС1/ВВ1=11/(9+11) звідси
ВВ1=20*СС1/11=20*8,1/11=162/11
3)Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость.
В нашем случае проекциями данного нам отрезка на плоскости - это отрезки, соединяющие концы данного отрезка на плоскости и перпендикуляра, опущенного на данную плоскость.Но плоскости перпендикулярны, значит эти перпендикуляры - это расстояния от концов отрезка до линии пересечения плоскостей. То есть проекцией отрезка АВ на плоскость α будет отрезок АВ1,а углом между отрезком АВ и плоскостью α будет угол ВАВ1. Соответственно проекцией отрезка АВ на плоскость β будет отрезок ВА1,а углом между отрезком АВ и плоскостью β будет угол АВА1.
Синус угла ВАВ1 равен отношению противолежащего катета ВВ1 к гипотенузе AB, то есть Sin(ВАВ1)=12/24=1/2. Значит угол между отрезком АВ и плоскостью α равен 30°.
Синус угла АВА1 равен отношению противолежащего катета АА1 к гипотенузе AB, то есть Sin(АВА1)=12√2/24=√2/2. Значит угол между отрезком АВ и плоскостью α равен 45°.
ответ: Углы, образованные отрезком с плоскостями равны 30° и 45°.
4)находим высоту, проведенную к стороне 14
она равна 12( можно найти через формулу Герона площадь, а затем поделить на половину стороны 14см)
ну а дальше расстояние равно гипотенузе с катетами 12 и 16 и равна 20см
5)1. Проведем перпендикуляры из точек С и Д на АВ. Обозначим их СК и ДКПо условию
угол СКД=45.
2. Из треуг. АВС СК - высота правильного треугольника
СК=АВ*sqrt {3}/2=6
3. В треуг. АВД ДК - высота, опущенная на основание равнобедренного треугольника. Как известно, она совпадает с медианой.
АК= АВ/2= 2sqrt {3}
Из прямоуг. трег. АКД по теореме Пифагора
ДК= sqrt ( АД^2-АК^2)= sqrt( 14-12)= sqrt2
4 В треугольнике СКД СК=6, СД=sqrt2 . Угол СКД= 45
По теореме косинусов
СД^2=36+2-2*6*sqrt2*сos 45=26
СД=корень из 26
Объяснение: