Строим треуг АВС. Из точки В проводим перпендикуляр ВD. Соединяем AD и CD. Получили пирамиду, BD-перпендикуляр к основанию АВС. Грани ABD и CBD являются прямоугольными треуг-ми. У треуг. ABD и CBD катет DB-общий, катеты АВ=ВС по условию, значит треуг-ки ABD=CBD по двум катетам, тогда AD=CD, следовательно треуг. ADC равнобедренный. Найдем AD^2=АВ^2+DB^2=625+15=640DO-высота, проведенная к основанию АС, ана же и медиана и искомое расстояние от точки D до прямой АС.Так как DO медиана, то АО=48/2=24смDO=√(AD^2-AO^2)=√(640-576)=8смответ 8см
△АВС.
AD - высота.
BD = 15 см
CD = 5 см
∠В = 30°
Найти:АС - ?
Решение:Высота AD делит △АВС на два прямоугольных треугольника ABD и ACD.
Рассмотрим △ABD:
∠B = 30˚, по условию.
"Если угол прямоугольного треугольника равен 30°, то напротив лежащий катет равен половине гипотенузы".
=> AD = 1/2AB
Составим уравнение:
Пусть х - AD, 2х - АВ, 15 - BD.
Теорема Пифагора:
с² = а² + b², где с - гипотенуза; a, b - катеты.
(2х)² = 15² + х²
4х² = 225 + х²
4х² - х² = 225
3х² = 225
х² = 75
х1 = 5√3
x2 = -5√3
Но так как единицы измерения не могут быть отрицательными => х = 5√3
Итак, AD = 5√3 см.
Найдём АС, по теореме Пифагора: (с = √(a² + b²), где с - гипотенуза; a, b - катеты)
√((5√3)² + 5²) = √100 = 10 см
Итак, АС = 10 см
ответ: 10 см.