12. Точки А(4; -1), В(2; -4), C(0; -1) являются вершинами параллелограмма ABCD. а) Найдите координаты вершины D. б) Докажите, что четырехугольник ABCD является ромбом. в) Напишите уравнения прямых, на которых лежат диагонали четырехугольника ABCD.
Объем такого параллелепипеда равен произведению его трех измерений. Одно из этих измерений равно 11см. Пусть оставшиеся измерения равны X и Y. Тогда периметр параллелепипеда равен 4*X+4*Y+4*11 =96см. Или X+Y=13 см. (1) Х=13-Y (2). Площадь полной поверхности параллелепипеда: S=2*(11*X)+2*(11*Y)+2*X*Y=370 см². Или 11*X+11*Y+X*Y=185 см². Или 11(X+Y)+X*Y=185 см². Подставим значение (1): 11*13+X*Y=185 => X*Y=42. Подставим значение из (2): Y²-13Y+42=0. Решаем это квадратное уравнение: Y1=(13+√(169-168)/2 = 7см. => X1=6см Y2=(13-1)/2=6см. => X2 =6см. Тогда объем параллелепипеда равен 6*7*11=462см³. ответ: V=462см³.
Одно из этих измерений равно 11см. Пусть оставшиеся измерения равны X и Y. Тогда периметр параллелепипеда равен 4*X+4*Y+4*11 =96см. Или
X+Y=13 см. (1) Х=13-Y (2).
Площадь полной поверхности параллелепипеда:
S=2*(11*X)+2*(11*Y)+2*X*Y=370 см². Или
11*X+11*Y+X*Y=185 см². Или
11(X+Y)+X*Y=185 см². Подставим значение (1):
11*13+X*Y=185 => X*Y=42. Подставим значение из (2):
Y²-13Y+42=0. Решаем это квадратное уравнение:
Y1=(13+√(169-168)/2 = 7см. => X1=6см
Y2=(13-1)/2=6см. => X2 =6см.
Тогда объем параллелепипеда равен 6*7*11=462см³.
ответ: V=462см³.
1) Так как CL - биссектриса прямого угла С, то
∠ACL = ∠LCB = 90° : 2 = 45°;
2) ∠MCB = ∠LCB - ∠LCM = 45° - 15° = 30°
3) Используем свойство : медиана CM, опущенная на гипотенузу прямоугольного треугольника AB, равна половине гипотенузы.
АМ = МВ = СМ.
4) ΔСМВ - равнобедренный, так как СМ=МВ, значит углы при основании равнобедренного треугольника тоже равны:
∠СМВ = ∠МВС = 30°.
5) ∠САВ = 90° - 30° = 60°;
6) ΔАНС - прямоугольный (с прямым углом Н), так как СН - высота.
∠АСН = 90- 60=30°.
7) ∠LCH = ∠ACL - ∠ACH = 45° - 30° = 15°/
ответ: величина угла LCH = 15°.