124. а) Точка - центр вписанной в треугольникАВС окружности. Найдите уголC треугольника, если уголAOB = 128°. б) Высота равностороннего треугольника равна 4,2 см. Найдите расстояние от точки пересечения биссектрис треугольника до его стороны.
Проведём построения и введём обозначения, как показано на рисунке. Рассмотрим треугольники AOH и BOH, они прямоугольные, стороны AO и OB равны как радиусы окружностей, OH — общая, следовательно, треугольники AOH и HOB равны. Откуда AH=BH= дробь, числитель — AB, знаменатель — 2 =10. Аналогично, равны треугольники COK и KOD, откуда CK=KD. Рассмотрим треугольник BOH, найдём OB по теореме Пифагора:
OB= корень из { OH в степени 2 плюс BH в степени 2 }= корень из { 24 в степени 2 плюс 10 в степени 2 }=26.
Рассмотрим треугольник OKD, он прямоугольный, из теоремы Пифагора найдём KD:
KD= корень из { OD в степени 2 минус OK в степени 2 }= корень из { OB в степени 2 минус OK в степени 2 }= корень из { 26 в степени 2 минус 10 в степени 2 }=24.
Площадь боковой поверхности треугольной призмы состоит из суммы площадей трех ее граней, которые являются прямоугольниками. Площадь одной грани будет равна 72/3=-24 см. В призме высота равна ребру, т.е. одной из сторон прямоугольной грани и равна 6 см. по условию задачи. Найдем длину стороны основания, которая является и стороной грани призмы из формулы площади прямоугольника ах6=24, т.е. сторона а = 4. Т.к. в основании правильной треугольной призмы лежит равнобедренный треугольник (все его стороны и углы равны), то можем вычислить его площадь
Проведём построения и введём обозначения, как показано на рисунке. Рассмотрим треугольники AOH и BOH, они прямоугольные, стороны AO и OB равны как радиусы окружностей, OH — общая, следовательно, треугольники AOH и HOB равны. Откуда AH=BH= дробь, числитель — AB, знаменатель — 2 =10. Аналогично, равны треугольники COK и KOD, откуда CK=KD. Рассмотрим треугольник BOH, найдём OB по теореме Пифагора:
OB= корень из { OH в степени 2 плюс BH в степени 2 }= корень из { 24 в степени 2 плюс 10 в степени 2 }=26.
Рассмотрим треугольник OKD, он прямоугольный, из теоремы Пифагора найдём KD:
KD= корень из { OD в степени 2 минус OK в степени 2 }= корень из { OB в степени 2 минус OK в степени 2 }= корень из { 26 в степени 2 минус 10 в степени 2 }=24.
Таким образом, CD=2KD=2 умножить на 24=48.
ответ: 48.
Площадь боковой поверхности треугольной призмы состоит из суммы площадей трех ее граней, которые являются прямоугольниками. Площадь одной грани будет равна 72/3=-24 см. В призме высота равна ребру, т.е. одной из сторон прямоугольной грани и равна 6 см. по условию задачи. Найдем длину стороны основания, которая является и стороной грани призмы из формулы площади прямоугольника ах6=24, т.е. сторона а = 4. Т.к. в основании правильной треугольной призмы лежит равнобедренный треугольник (все его стороны и углы равны), то можем вычислить его площадь
S= 1/2х4х4хsin60=8√3/2=4√3