124.б)Высота равносторннего треугольника равна 4,2см.Найдите расстояние лот точки,пересечения биссектрис треугольника до его стороны. умоляю быстрее нужнооо по геометрии
Сделаем доп построения: проедем высоту ВЕ из вершины В. В нашей трапеции образовалось два треугольника: АВЕ и CDH (CH - высота из условия задачи, сами мы ввели только вершину Н для удобства); рассмотрим эти два треугольника: угол А=углу D, угол Е= углу Н=90 (т.к. ВЕ и СН - высоты) => угол АВЕ=углу DCH (сумма углов в треугольнике равна 180 градусов) => по двум углам и стороне между ними рассматриваемые треугольники равны => AE=DH=8; Чтобы найти EH, нужно из АН вычесть DH, т.е. ЕН=15-8=7. РАссмотрим чет-ник ВСНЕ: в нем ВСII ЕН (т.к. они части осноания трапеции),ВС=ЕН; все углы в нем по 90 градусов => т.о. ВС=ЕН=7 см
Не любая , а биссектриса к основанию ( а не к боковой стороне) совпадает с высотой и медианой. Извините, не прочитал, что в равностороннем. Для равнобедренного рассуждение такое: Это вытекает из того, что биссектриса делит треугольник на два равных ( по первому признаку, т.е. по двум сторонам и углу между ними). В этих треугольниках напротив равных углов -равные стороны: отрезки на которые биссектриса делит основание. Значит она медиана. Два угла с вершиной на середине основания тоже равны. А так как они смежные т их сумма равна 180 градусам, то и они равны 90 градусам. Значит биссектриса совпадает с высотой В равностороннем - то же рассуждение для любой стороны. .
В нашей трапеции образовалось два треугольника: АВЕ и CDH (CH - высота из условия задачи, сами мы ввели только вершину Н для удобства);
рассмотрим эти два треугольника:
угол А=углу D, угол Е= углу Н=90 (т.к. ВЕ и СН - высоты) => угол АВЕ=углу DCH (сумма углов в треугольнике равна 180 градусов) => по двум углам и стороне между ними рассматриваемые треугольники равны => AE=DH=8;
Чтобы найти EH, нужно из АН вычесть DH, т.е. ЕН=15-8=7.
РАссмотрим чет-ник ВСНЕ:
в нем ВСII ЕН (т.к. они части осноания трапеции),ВС=ЕН;
все углы в нем по 90 градусов =>
т.о. ВС=ЕН=7 см
, а биссектриса к основанию ( а не к боковой стороне) совпадает с высотой и медианой.
Извините, не прочитал, что в равностороннем. Для равнобедренного рассуждение такое:
Это вытекает из того, что биссектриса делит треугольник на два равных ( по первому признаку, т.е. по двум сторонам и углу между ними). В этих треугольниках напротив равных углов -равные стороны: отрезки на которые биссектриса делит основание. Значит она медиана. Два угла с вершиной на середине основания тоже равны. А так как они смежные т их сумма равна 180 градусам, то и они равны 90 градусам. Значит биссектриса совпадает с высотой
В равностороннем - то же рассуждение для любой стороны.
.