15. Если сфера радиуса 5 см проходит через все вершины прямоугольного параллеле- Пипеда, в основании которого прямоугольник со сторонами 3см и 4см, то объём этого параллелепипеда (в см?) равен.
Осевое сечение усеченного конуса - равнобедренная трапеция. основания: а=22 см (R₁*2), b=32 см (R₂*2) боковая сторона - образующая конуса l =13 см найти высоту равнобедренной трапеции - расстояние от центра верхнего основания до центра нижнего основания усеченного конуса перпендикуляры от верхнего основания до нижнего(из тупых углов) отсекают от равнобедренной трапеции 2 равных прямоугольных треугольника с гипотенузой(образующая конуса) 13 см и катетом 5 см ((32-22)/2=10/2=5 см). найти катет -H высоту усеченного конуса. по теореме Пифагора: 13²=5²+H². H²=169-25. H=12 cм ответ: расстояние между центрами оснований усеченного конуса 12 см
Введем дополнительные обозначения: Пусть окружность касается стороны CD в точке К, ОЕ1 и ОЕ2 - высоты трапеции АОQD a) по условию АВ-диаметр окружности, значит АО=ОВ=R ABCD - равнобедренная трапеция, следовательно ∠ВАD=∠CDA и AB=CD=2R Если Q - середина CD, то ОQ - средняя линия трапеции. Следовательно AO=OB=CQ=QD=R Также АО=ОН=R, то есть ΔАОН-равнобедренный, значит ∠ВАD=∠OHA При этом ∠ВАD=∠CDA, следовательно ∠OHA=∠CDA, значит эти углы соответственные при параллельных прямых ОН и DQ и секущей АD. Итак, ОН=QD и ОН || QD, следовательно DQOH-параллелограмм.
б) ∠ВАD=∠OHA=60° ∠АОН=180°-(∠ВАD+∠OHA)=180°-(60°+60°)=60° - ΔАОН - равносторонний, следовательно АН=R ∠ABC=∠BCD=180°-60°=120° Если окружность касается CD, то ∠OKC=90° и ОК=R Сумма всех углов в четырехугольнике равна 360° ∠ВОК=360°-(∠ОВС+∠OKC+∠DCK)=360°-(120°+90°+120°)=30° Если ОQ -средняя линия трапеции, то OQ || AD, следовательно ∠BAD=∠BOQ=60° ∠KOQ=∠BOQ-∠ВОК=60°-30°=30° ΔOQK -прямоугольный с прямым углом OKQ
основания:
а=22 см (R₁*2), b=32 см (R₂*2)
боковая сторона - образующая конуса l =13 см
найти высоту равнобедренной трапеции - расстояние от центра верхнего основания до центра нижнего основания усеченного конуса
перпендикуляры от верхнего основания до нижнего(из тупых углов) отсекают от равнобедренной трапеции 2 равных прямоугольных треугольника с гипотенузой(образующая конуса) 13 см и катетом 5 см ((32-22)/2=10/2=5 см). найти катет -H высоту усеченного конуса.
по теореме Пифагора: 13²=5²+H². H²=169-25. H=12 cм
ответ: расстояние между центрами оснований усеченного конуса 12 см
Пусть окружность касается стороны CD в точке К, ОЕ1 и ОЕ2 - высоты трапеции АОQD
a) по условию АВ-диаметр окружности, значит АО=ОВ=R
ABCD - равнобедренная трапеция, следовательно ∠ВАD=∠CDA и AB=CD=2R
Если Q - середина CD, то ОQ - средняя линия трапеции. Следовательно AO=OB=CQ=QD=R
Также АО=ОН=R, то есть ΔАОН-равнобедренный, значит
∠ВАD=∠OHA
При этом ∠ВАD=∠CDA, следовательно ∠OHA=∠CDA, значит эти углы соответственные при параллельных прямых ОН и DQ и секущей АD.
Итак, ОН=QD и ОН || QD, следовательно DQOH-параллелограмм.
б) ∠ВАD=∠OHA=60°
∠АОН=180°-(∠ВАD+∠OHA)=180°-(60°+60°)=60° - ΔАОН - равносторонний, следовательно АН=R
∠ABC=∠BCD=180°-60°=120°
Если окружность касается CD, то ∠OKC=90° и ОК=R
Сумма всех углов в четырехугольнике равна 360°
∠ВОК=360°-(∠ОВС+∠OKC+∠DCK)=360°-(120°+90°+120°)=30°
Если ОQ -средняя линия трапеции, то OQ || AD, следовательно
∠BAD=∠BOQ=60°
∠KOQ=∠BOQ-∠ВОК=60°-30°=30°
ΔOQK -прямоугольный с прямым углом OKQ
OQ=HD- так как DQOH-параллелограмм
средняя линия трапеции =(а+в)/2