150 пкт! с2 в правильной пирамиде sabc с основанием abc известны ребра ab=8sqrt3 и sc=17. найдите угол, образованный плоскостью основания и прямой am, где m -точка пересечения медиан грани sbc.
Построение сводится к проведению перпендикуляра из точки к прямой.
Из вершины А, как из центра, раствором циркуля, равным АС, делаем насечку на стороне ВС. Обозначим эту точку К.
∆ КАС- равнобедренный с равными сторонами АК=АС.
Разделив КС пополам, получим точку М, в которой медиана ∆ КАС пересекается с основанием КС. Т.к. в равнобедренном треугольнике медиана=биссектриса=высота, отрезок АМ будет искомой высотой.
Для этого из точек К и С, как из центра, одним и тем же раствором циркуля ( больше половины КС) проведем две полуокружности. Соединим точки их пересечения с А.
Отрезок АМ разделил КС пополам и является искомой высотой ∆ АВС из вершины угла А.
Объяснение:
Нужно построить, как на рисунке.там вс основное здесь.
Итак, построим высоты, тогда АВН=100-90=10, угол ВАН=180-90-10=80.
Аналогично с треугольником СМД: Угол МСД=170-90=80, угол СДМ=180-90-80=10 градусов.
Отсюда треугольники ВАН и ДСМ подобны по двум углам
Также ВСМН - прямоугольник (по определению), ВС=НМ, ВН=СМ (высоты).
Из подобия АВ/СД=АН/СМ=4корней5/8корней5=1/2
АН/СМ=1/2 СМ=ВН (высоты), значит АН/ВН=1/2 отсюда 2АН=ВН
АВ^2=АН^2+BH^2. AB^2=(2AH)^2+AH^2
5AH^2=(4корней5)^2
5AH^2=16*5 => AH^2=16, AH=4
BH=2*AH=2*4=8 - это высота, также равна СМ
Точно также поступаем с треугольником СМД. Там ВН/ДМ=1/2, ДМ=2ВН=2СМ
Тогда ДМ=2*8=16
По построению АД=АН+НМ+МД, а НМ=ВС (НМСВ прямоугольник по построению), значит АД-ВС=АН+НМ+МД-НМ=АН+МД=4+16=20
Построение сводится к проведению перпендикуляра из точки к прямой.
Из вершины А, как из центра, раствором циркуля, равным АС, делаем насечку на стороне ВС. Обозначим эту точку К.
∆ КАС- равнобедренный с равными сторонами АК=АС.
Разделив КС пополам, получим точку М, в которой медиана ∆ КАС пересекается с основанием КС. Т.к. в равнобедренном треугольнике медиана=биссектриса=высота, отрезок АМ будет искомой высотой.
Для этого из точек К и С, как из центра, одним и тем же раствором циркуля ( больше половины КС) проведем две полуокружности. Соединим точки их пересечения с А.
Отрезок АМ разделил КС пополам и является искомой высотой ∆ АВС из вершины угла А.