Через конец А отрезка AB длиной b проведена плоскость, перпендикулярная отрезку, и в этой плоскости проведена прямая. Найдите расстояние от точки В до прямой, если расстояние от точки А до нее равно а.
Решение.
Пусть в плоскости проведена прямая р.
Расстоянием от точки В до прямой р является длина перпендикуляра , те ВР⊥ р. AB⊥α ⇒ AB⊥AP.
По т о трех перпендикулярах : если наклонная ВР⊥ р ( прямой лежащей в плоскости ) , то и проекция АР⊥ р. Тогда расстоянием от точки А до прямой р будет длина перпендикуляра АР=а.
P.S. Сорри за такой схематичный рисунок, это я в полевых условиях, а у вас, благо, есть линейка и карандаш))
S трапеции = 1/2 (AB+CD)* AC , где AB и CD - это основания, а AC - это высота. 114=1/2(12+7) * AC AC= 144:9,5 AC=12 (в нашей трапеции АС - это ещё и меньшее боковое основание, поэтому тоже идёт в ответ)
Рассмотрим ABCD (трапеция), проведём прямую ВН параллельную АС. Заметим, что прямая ВН = АС (высоте) = 12 Рассмотрим прямоугольный треугольник ВНС: По теореме Пифагора найдём отрезок ВD(гипотенузу) BD^2= 12^2+5^2=169 BD=13 (в нашей трапеции BD-больше боковое основание) ответ: 12; 13
Через конец А отрезка AB длиной b проведена плоскость, перпендикулярная отрезку, и в этой плоскости проведена прямая. Найдите расстояние от точки В до прямой, если расстояние от точки А до нее равно а.
Решение.
Пусть в плоскости проведена прямая р.
Расстоянием от точки В до прямой р является длина перпендикуляра , те ВР⊥ р. AB⊥α ⇒ AB⊥AP.
По т о трех перпендикулярах : если наклонная ВР⊥ р ( прямой лежащей в плоскости ) , то и проекция АР⊥ р. Тогда расстоянием от точки А до прямой р будет длина перпендикуляра АР=а.
ΔАВР-прямоугольный , по т Пифагора ВР=√(а²+b²).
S трапеции = 1/2 (AB+CD)* AC , где AB и CD - это основания, а AC - это высота.
114=1/2(12+7) * AC
AC= 144:9,5
AC=12 (в нашей трапеции АС - это ещё и меньшее боковое основание, поэтому тоже идёт в ответ)
Рассмотрим ABCD (трапеция), проведём прямую ВН параллельную АС. Заметим, что прямая ВН = АС (высоте) = 12
Рассмотрим прямоугольный треугольник ВНС:
По теореме Пифагора найдём отрезок ВD(гипотенузу)
BD^2= 12^2+5^2=169
BD=13 (в нашей трапеции BD-больше боковое основание)
ответ: 12; 13