17.14. Дана прямая С две точки А и В, лежащие от нее по разные стороны (рис. 17.8). Постройте такую точку C на прямой с, для которой разность расстояний AC - CB наибольшая.
Параллельная гипотенузе прямая отсекает от исходного треугольника подобный ему. Пусть площадь исходного треугольника будет S₁, а меньшего S₂ Так как площади частей, на которую треугольник разделился, равны между собой, то площадь меньшего треугольника равна половине площади исходного, Площади подобных фигур относятся как квадрат коэффициента их подобия. Пусть коэффициент подобия сторон=k S₁:S₂=2 (по условию) Отношение площадей треугольников= k² k² =2 Периметры подобных фигур относятся как их линейные измерения. Коэффициент подобия сторон и периметров треугольников k=√2 Р₁:Р₂=√2 Гипотенуза по т. Пифагора=√(3²+4²) =5 Р₁=3+4+5=12 12:Р₂=√2Р₂=12:√2 Умножив числитель и знаменатель дроби на √2, получим =12√2):√2*√2=6√2 ответ: Периметр меньшего треугольника 6√2 ----------------- Определение: Симметрия относительно точки или центральная симметрия - это такое свойство геометрической фигуры, когда любой точке, расположенной по одну сторону центра симметрии, соответствует другая точка, расположенная по другую сторону центра.
Построить треугольник, симметричный относительно точки, расположенной внутри него, значит построить треугольник, все вершины которого находятся на таком же расстоянии от данной точки, как и вершины исходного, но по другую сторону от неё. Для этого через каждую вершину и точку О проводим прямые, на которых откладываем расстояние, равное расстоянию от вершины до точки, и затем соединяем концы образовавшихся отрезков. Построение см. во вложении.
Хорды, перпендикулярные друг другу, образуют вписанный прямой угол. Вписанный прямой угол в окружности опирается на диаметр и образует с ним прямоугольный треугольник. С уверенностью можно сказать, что длина хорд 10 см и 24 см, так как из условия видно, что хорды и диаметр - прямоугольный треугольник с отношением сторон 5:12:13 - из троек Пифагора. Решение. Пусть коэффициент отношения катетов этого треугольника будет х. Диаметр ( гипотенуза) равен 2r=26 см Тогда по т.Пифагора 26²=(5x)²+(12х)² 676=169х² х²=4 х=2 5х=5*2=10 см 12х=12*2=24см ответ: Длина хорд 10 см и 12 см
Пусть площадь исходного треугольника будет S₁, а меньшего S₂
Так как площади частей, на которую треугольник разделился, равны между собой, то площадь меньшего треугольника равна половине площади исходного,
Площади подобных фигур относятся как квадрат коэффициента их подобия.
Пусть коэффициент подобия сторон=k
S₁:S₂=2 (по условию)
Отношение площадей треугольников= k²
k² =2
Периметры подобных фигур относятся как их линейные измерения.
Коэффициент подобия сторон и периметров треугольников
k=√2
Р₁:Р₂=√2
Гипотенуза по т. Пифагора=√(3²+4²) =5
Р₁=3+4+5=12
12:Р₂=√2Р₂=12:√2
Умножив числитель и знаменатель дроби на √2, получим =12√2):√2*√2=6√2
ответ:
Периметр меньшего треугольника 6√2
-----------------
Определение: Симметрия относительно точки или центральная симметрия - это такое свойство геометрической фигуры, когда любой точке, расположенной по одну сторону центра симметрии, соответствует другая точка, расположенная по другую сторону центра.
Построить треугольник, симметричный относительно точки, расположенной внутри него, значит построить треугольник, все вершины которого находятся на таком же расстоянии от данной точки, как и вершины исходного, но по другую сторону от неё.
Для этого через каждую вершину и точку О проводим прямые, на которых откладываем расстояние, равное расстоянию от вершины до точки, и затем соединяем концы образовавшихся отрезков.
Построение см. во вложении.
Вписанный прямой угол в окружности опирается на диаметр и образует с ним прямоугольный треугольник.
С уверенностью можно сказать, что длина хорд 10 см и 24 см, так как из условия видно, что хорды и диаметр - прямоугольный треугольник с отношением сторон 5:12:13 - из троек Пифагора.
Решение.
Пусть коэффициент отношения катетов этого треугольника будет х.
Диаметр ( гипотенуза) равен 2r=26 см
Тогда по т.Пифагора
26²=(5x)²+(12х)²
676=169х²
х²=4
х=2
5х=5*2=10 см
12х=12*2=24см
ответ: Длина хорд 10 см и 12 см