Пусть сторона треугольника х см, тогда половина основания равно х/2, так как высота в равностороннем треугольнике является медианой и биссектрисой, то делит основание пополам и равносторонний треугольник на два равных прямоугольных треугольника. По теореме Пифагора 3² + х²/4 = х² 36 + х² =4х² 36 = 3х² х²=12 х=√12 x≈3,46 P=a+b+c=3,46+3,46+3,46=10,38
Проводим по одной высоте из каждого конца верхнего основания. Нижнее основании разделилось на 3 отрезка, а вся трапеция на 2 прямоугольных треугольника и прямоугольник.Средний отрезок равен верхнему основанию - 2, а два других в сумме дают 16 - 2 = 14. Обозначим левый за х, а правый за 14 - х, а высоту за h, тогда по т. Пифагора: 1) 2)
вычитаем, получаем:
Т.е. нижние отрезки 5 и 9 соответственно. Высота из любого из этих уравнений при подстановке 5 будет равна 12. Площадь равна полусумме оснований на высоту = 9*12 = 108 С другой стороны площадь трапеции равна произведению средней линии на высоту. Т.е. средняя линия равна 9.
По теореме Пифагора 3² + х²/4 = х²
36 + х² =4х²
36 = 3х²
х²=12
х=√12
x≈3,46
P=a+b+c=3,46+3,46+3,46=10,38
Нижнее основании разделилось на 3 отрезка, а вся трапеция на 2 прямоугольных треугольника и прямоугольник.Средний отрезок равен верхнему основанию - 2, а два других в сумме дают 16 - 2 = 14.
Обозначим левый за х, а правый за 14 - х, а высоту за h, тогда по т. Пифагора:
1)
2)
вычитаем, получаем:
Т.е. нижние отрезки 5 и 9 соответственно.
Высота из любого из этих уравнений при подстановке 5 будет равна 12.
Площадь равна полусумме оснований на высоту = 9*12 = 108
С другой стороны площадь трапеции равна произведению средней линии на высоту.
Т.е. средняя линия равна 9.