Площадь трапеции равна произведению средней линии на высоту. Средняя линия по условию равна 7,5. Значит, надо ещё высоту трапеции найти. АВСD - трапеция. АС и ВD - диагонали. АС = 9, ВD = 12. Проведите через вершину С прямую, параллельно диагонали ВD. Пусть Е - точка пересечения этой прямой с продолжением АD. Тогда ВСЕD - параллелограмм. Его противоположные стороны равны, значит, СЕ = ВD = 12. Рассмотрим треугольник АСЕ. В нём стороны будут АС = 9, СЕ = 12, АЕ = АD + DЕ = AD + BC = 2*7,5 = 15. Поскольку 15^2 = 9^2 + 12^2, то этот треугольник прямоугольный с прямым углом АСЕ. Тогда высота, проведённая к гипотенузе АЕ равна АС*СЕ/АЕ h = 9*12/15 = 7,2. Это и будет высота трапеции. Тогда S = 7,5*7,2 = 54 ответ. 54
Можно и по-другому, а именно: не вычислять высоту. Если угол АСЕ = 90 градусов, то и угол между диагоналями равен 90 градусов, то есть диагонали взаимно перпендикулярны. Тогда площадь трапеции равна половине произведения диагоналей. S = 0,5*9*12 = 54
Когда боковые грани пирамиды имеют равный угол наклона к основанию, то это означает, что вершина пирамиды проектируется в центр вписанной окружности.
Чтобы это понять, рассмотрим прямоугольный треугольник, образованный высотой пирамиды, апофемой (высотой боковой грани) и её (апофемы) проекцией на основание. Поскольку угол между апофемой и её проекцией и есть линейный угол двугранного угла между гранью и основанием, то НЕЗАВИСИМО ОТ ТОГО, КАКУЮ МЫ ВЫБРАЛИ БОКОВУЮ ГРАНЬ, треугольники получаются равными друг другу - по катету (у них общий катет - высота пирамиды) и острому углу. То есть и вершина, и её проекция на основание РАВНОУДАЛЕНЫ от сторон основания.
САМО СОБОЙ, это означает, что в основание МОЖНО вписать окружность, и что все апофемы равны между собой. То есть все апофемы 10, и осталось найти периметр основания.
Но поскольку в трапецию можно вписать окружность, то суммы противоположных сторон равны. То есть сумма боковых сторон равна сумме оснований трапеции, 2 + 8 = 10, и периметр равен 20.
Средняя линия по условию равна 7,5. Значит, надо ещё высоту трапеции найти.
АВСD - трапеция. АС и ВD - диагонали. АС = 9, ВD = 12.
Проведите через вершину С прямую, параллельно диагонали ВD. Пусть Е - точка пересечения этой прямой с продолжением АD. Тогда ВСЕD - параллелограмм. Его противоположные стороны равны, значит, СЕ = ВD = 12.
Рассмотрим треугольник АСЕ. В нём стороны будут
АС = 9, СЕ = 12, АЕ = АD + DЕ = AD + BC = 2*7,5 = 15.
Поскольку 15^2 = 9^2 + 12^2, то этот треугольник прямоугольный с прямым углом АСЕ.
Тогда высота, проведённая к гипотенузе АЕ равна АС*СЕ/АЕ
h = 9*12/15 = 7,2. Это и будет высота трапеции.
Тогда S = 7,5*7,2 = 54
ответ. 54
Можно и по-другому, а именно: не вычислять высоту.
Если угол АСЕ = 90 градусов, то и угол между диагоналями равен 90 градусов, то есть диагонали взаимно перпендикулярны.
Тогда площадь трапеции равна половине произведения диагоналей.
S = 0,5*9*12 = 54
Ну, раз вы 2 раза публикуете, я 2 раза решаю :)))
Когда боковые грани пирамиды имеют равный угол наклона к основанию, то это означает, что вершина пирамиды проектируется в центр вписанной окружности.
Чтобы это понять, рассмотрим прямоугольный треугольник, образованный высотой пирамиды, апофемой (высотой боковой грани) и её (апофемы) проекцией на основание. Поскольку угол между апофемой и её проекцией и есть линейный угол двугранного угла между гранью и основанием, то НЕЗАВИСИМО ОТ ТОГО, КАКУЮ МЫ ВЫБРАЛИ БОКОВУЮ ГРАНЬ, треугольники получаются равными друг другу - по катету (у них общий катет - высота пирамиды) и острому углу. То есть и вершина, и её проекция на основание РАВНОУДАЛЕНЫ от сторон основания.
САМО СОБОЙ, это означает, что в основание МОЖНО вписать окружность, и что все апофемы равны между собой. То есть все апофемы 10, и осталось найти периметр основания.
Но поскольку в трапецию можно вписать окружность, то суммы противоположных сторон равны. То есть сумма боковых сторон равна сумме оснований трапеции, 2 + 8 = 10, и периметр равен 20.
Sboc = (1/2)*20*10 = 100