1Постройте прямую. 2. Отметьте точку, не лежащую на ней. 3. Обозначьте ее. 4. Из этой точки проведите две наклонные. 5. Постройте их проекции. Обозначьте буквами. 6. Сравните наклонные 7. Сравните их проекции. СОС
1. Диагонали прямоугольника равны, а также, по свойству параллелограмма, точкой пересечения делятся пополам. Соответственно, EB = DE = AE = EC.
2. Рассмотрим треугольник ВЕС. Так как EB = EС (по выше доказанному), то он равнобедренный. Тогда ∠EBC = ∠ECB = 65° (по свойству равнобедренного треугольника). По теореме о сумме углов треугольника, имеем, что - ∠BEC = 180°-(65°+65°) = 50°.
(Хочу подметить, что ∠DEC тоже находится между диагоналями, но так как он смежный вместе с углом в 50° (острым), то он тупой. А по условию нам нужен не тупой, а острый.)
Проводим прямую FD за точку В и опускаем перпендикуляр СD. Рассмотрим треугольник ADC. Угол D=90. угол А равен 30, угол С равен 60. sqt - это квадратный корень. По теореме синусов: 40/(sqt3)=2*CD. Откуда CD=20/(sqt=3) AD=20, углы известны, находим АС. 40/sqt3 Проведем высоту ВЕ. Рассмотрим треугольник ВЕС. Угол В равен 60 градусам, так как Е - прямой, а С равен 30. Аналогично по теореме синусов находим все его стороны, в том числе высоту исходного треугольника. Теорема синусов: стороны треугольника пропорциональны синусам противолежащих углов. Удачи!
Дано:
ABCD - прямоугольник.
АС и DB - диагонали.
Е - точка пересечения диагоналей.
∠DBC = 65°.
Найти:
∠BEC = ?
1. Диагонали прямоугольника равны, а также, по свойству параллелограмма, точкой пересечения делятся пополам. Соответственно, EB = DE = AE = EC.
2. Рассмотрим треугольник ВЕС. Так как EB = EС (по выше доказанному), то он равнобедренный. Тогда ∠EBC = ∠ECB = 65° (по свойству равнобедренного треугольника). По теореме о сумме углов треугольника, имеем, что - ∠BEC = 180°-(65°+65°) = 50°.
(Хочу подметить, что ∠DEC тоже находится между диагоналями, но так как он смежный вместе с углом в 50° (острым), то он тупой. А по условию нам нужен не тупой, а острый.)
ответ: 50°.
По теореме синусов: 40/(sqt3)=2*CD. Откуда CD=20/(sqt=3)
AD=20, углы известны, находим АС. 40/sqt3
Проведем высоту ВЕ.
Рассмотрим треугольник ВЕС. Угол В равен 60 градусам, так как Е - прямой, а С равен 30. Аналогично по теореме синусов находим все его стороны, в том числе высоту исходного треугольника. Теорема синусов: стороны треугольника пропорциональны синусам противолежащих углов. Удачи!