Объяснение:
1 задача
Поскольку углы 1 и 2 равны, то и смежные им будут равны (180°-∠1=180°-∠2)
Также ∠ADC=∠ADB, поскольку 180°-90°=90°
AD-общая сторона. Таким образом треугольники ΔABD и ΔACD равны по стороне и прилягающим углам
2 задача
Треугольники ΔABD=ΔA1B1D1 равны по двум сторонам и углом между ними (AB=A1B1, BD=B1D1, ∠ABD=∠A1B1D1 по условию)
Соответсвенно их углы∠BDA=∠B1D1A1 тоже равны
А значит и смежные им углы равны ∠BDC=∠B1D1C1
Из этого следует, что треугольники ΔBDC=ΔB1D1C1 равны по стороне и 2 прилягающим углам
AC=AD+DC
A1C1=A1D1+D1C1
AD=A1D1, DC=D1C1 как соответсвующие стороны в равных треугольниках, поэтому и сумма их равна AC=A1C1
⇒ AB : 26 = 5 : 13 ⇒ AB = 10
AD = √(IACI² - IABI²) = √(13² - 10²) = √69
S = AB·AD = 10·√69
-
Дано ромб ABCD; AB = BC = CD = DA ; AC⊥BD ; O тачка пересечения
диагональ ; AC > BD
AC + BD = 14 ⇒ BD = 14 - AC
AC + AB = 13 ⇒ AB = 13 - AC
AB² = AO² + OB² ⇒
(13 - AC)² = (AC/2)² + [(14 - AC)/2]² обозн. AC=x
4· (169 - 26x + x²) = x² + x² - 28x + 196
x² - 38x+240 = 0 ⇒ x = 11 ⇒
AC = 11; BD = 3; AB = 2
S(Трапеции) = 1/2·AC·BD = 1/2·11·3 = 16,5
Дано параллелограмм ABCD BE высота
AB= 3 ; AD = 5 ; ∡ ABE = 60°
⇒ BE = AB·Cos60°= 3·1/2 = 1,5
S = AD·BE = 5·1,5 = 7,5
S = 7,5
Объяснение:
1 задача
Поскольку углы 1 и 2 равны, то и смежные им будут равны (180°-∠1=180°-∠2)
Также ∠ADC=∠ADB, поскольку 180°-90°=90°
AD-общая сторона. Таким образом треугольники ΔABD и ΔACD равны по стороне и прилягающим углам
2 задача
Треугольники ΔABD=ΔA1B1D1 равны по двум сторонам и углом между ними (AB=A1B1, BD=B1D1, ∠ABD=∠A1B1D1 по условию)
Соответсвенно их углы∠BDA=∠B1D1A1 тоже равны
А значит и смежные им углы равны ∠BDC=∠B1D1C1
Из этого следует, что треугольники ΔBDC=ΔB1D1C1 равны по стороне и 2 прилягающим углам
AC=AD+DC
A1C1=A1D1+D1C1
AD=A1D1, DC=D1C1 как соответсвующие стороны в равных треугольниках, поэтому и сумма их равна AC=A1C1