2. Дан параллелепипед ABCD A1B1C1D1 . У сумму . Укажите полученный вектор. 1) ; 2) 3) 4)
1. В параллелепипеде ABCD A1B1C1D1 укажите векторы, coнаправленные вектору и имеющие такую же длину. 1) и 2) и 3) и 4) и
3. Дан куб ABCD A1B1C1D1 с ребром, равным b. Вычислите. 1) 3b; 2) 2 b; 3) b; 4) b
4. В пирамиде SАВС все ребра равны, апофема равна 18 Точка Е и АЕ:ЕS = 2:1, точка FAB и BF : FA = 1:2. Найдите |EF|.
5. Дан куб ABCD A1B1C1D1 с ребром, равным a. Точка Е и АЕ:Е = 1: 2, точка F C1 и CF : FC1 = 2 : 3. Разложите вектор по векторам и и найдите его длину.
Нужно до 14:00
Пусть углы треугольника 3х, 5х, 7х.
Тогда сумма углов треугольника 3х+5х+7х = 15х градусов, что равно 180°
Составляем уравнение
15х = 180° ⇒ х=12°
Значит углы треугольника 3х=3·12=36° 5х = 5·12 = 60° 7х = 7·12 = 84°
Один из углов второго треугольника на 24 ° больше второго угла, значит 60+24°= 84°
и угол на 24° меньше третьего - угол в 60°=84°-24°
Значит два угла второго треугольника 84° и 60°, а третий угол 180° - 84° - 60°= 36°
углы второго треугольника 84°; 60° ; 36°
Треугольники подобны по трём углам.
Прямоугольник ТКРС.
∠КАВ = 20°
∠ВСР = 30°
АМК = 20°
Найти:углы △АВС.
Решение:Прямоугольник - геометрическая фигура, у которой все углы прямые.
=> ∠КТС = ∠ТСР = ∠СРК = ∠РКТ = 90°
Сумма смежных углов равна 180°.
∠РКТ смежный с ∠ТКМ = 180° - 90° = 90°
=> △АМК - прямоугольный.
Сумма острых углов прямоугольного треугольника равна 90°.
=> ∠МАК = 90° - 20° = 70°
Сумма смежных углов равна 180°.
∠МАК смежный с ∠КАС => ∠КАС = 180° - 70° = 110°
Так как ∠КАВ = 20°,по условию => ∠ВАС = 110° - 20° = 90°
=> △ВАС - прямоугольный.
Сумма острых углов прямоугольного треугольника равна 90°
=> КВА = 90° - 20° = 70°
Сумма острых углов прямоугольного треугольника равна 90°
=> ∠СВР = 90° - 30° = 60°
Сумма смежных углов равна 180°.
∠КВА смежный с ∠АВР => ∠АВР = 180° 70° = 110°
Так как ∠СВР = 60° => ∠АВС = 110° - 60° = 50°
Сумма острых углов прямоугольного треугольника равна 90°
=> ∠ВСА = 90° - 50° = 40°
ответ: 90°, 50°, 40°.