Пусть К, Р, M, N - середины сторон соответственно АВ, BC, CD, AD, тогдаВ ΔABD: AK = KB, AN = ND ⇒ KN - средняя линия" Средняя линия треугольника параллельна одной из его сторон и равна половине этой стороны "KN || BD, KN = BD/2В ΔBCD: BP = PC, CM = MD ⇒ PM - средняя линияPM || BD, PM = BD/2Значит, KN || PM , KN = PMИз этого следует, что четырёхугольник KPMN - параллелограмм (по признаку параллелограмма)KN = BD/2 , KP = AC/2Р kpmn = 2•(KN + KP) = 2•(BD/2 + AC/2) = BD + AC = 12 + 10 = 22 смОТВЕТ: Р = 22 см
Меньший катет лежит против меньшего угла (он будет равен 90-60=30 градусов).
Катет, лежащий против угла 30 градусов, равен половине гипотенузы; значит меньший катет равен 0,5x.
Из условия следует: x+0,5x=26,4
1,5x=26,4
x=17,6 см
ответ: 17,6 см
или так
Т.к. это прямоугольный треугольник то углы его будут равны 60 градусов, 90 и 30. Меньший катет лежит напротив угла в 30 градусов. По правилу он равен половине гипотенузы. Поэтому задачу можно решить через уравнение. Пусть х - это катет , тогда гипотенуза равна 2х, а их сумма по условию равна 26,4 см. Составим уравнение.
ответ:17,6 см
Объяснение:
Пусть x - гипотенуза.
Меньший катет лежит против меньшего угла (он будет равен 90-60=30 градусов).
Катет, лежащий против угла 30 градусов, равен половине гипотенузы; значит меньший катет равен 0,5x.
Из условия следует: x+0,5x=26,4
1,5x=26,4
x=17,6 см
ответ: 17,6 см
или так
Т.к. это прямоугольный треугольник то углы его будут равны 60 градусов, 90 и 30. Меньший катет лежит напротив угла в 30 градусов. По правилу он равен половине гипотенузы. Поэтому задачу можно решить через уравнение. Пусть х - это катет , тогда гипотенуза равна 2х, а их сумма по условию равна 26,4 см. Составим уравнение.
х+2х = 26,4
3х= 26,4
х = 8,8
1. 8,8 * 2 = 17,6 см