2. Дано ABC треугольник, с стороной АВ=5см, ВС=6см, AC=8см. Меньшая сторона второго треугольника подобно первому равна ДF=4см. Найдите остальные стороны треугольника ДFK.
Все ребра треугольной призмы равны. Найдите площадь основания призмы, если площадь ее полной поверхности равна 8+16√ 3
Полная площадь призмы равна сумме площадей двух оснований и площади боковой поверхности. Пусть ребро призмы равно а. Грани - квадраты, их 3. S бок=3а² S двух осн.=( 2 а²√3):4=( а²√3):2 По условию 3а²+(а²√3):2=8+16√3 Умножим обе стороны уравнения на 2 и вынесем а² за скобки: а²(6+√3)=16+32√3)=16(1+2√3) а²=16(1+2√3):(6+√3) Подставим значение а² в формулу площади правильного треугольника: S=[16*(1+2√3):(6+√3)]*√3:4 S=4(√3+6):(6+√3)=4 (ед. площади)
Думаю, решение понятно. Перенести решение на листок для Вас не составит труда.
Для начала рассмотрим произвольную плоскость β, параллельную плоскости α. Через какую-нибудь точку В плоскости β проведем прямую b, параллельную прямой а. Так как прямая а пересекает плоскость α, то прямая b также пересекает эту плоскость. Следовательно, прямая b пересекает плоскость β (а не будет лежать в ней). Поэтому прямая a также будет пересекать плоскость β.
НОМЕР 2(рисунок смотри ниже,самое первое фото)
Пусть плоскость γ будет пересекать плоскость α по прямой а. Докажем, что плоскость γ пересекает также плоскость β. Проведем в плоскости γ прямую b, пересекающую прямую a. Прямая b пересекает плоскость α, поэтому она пересекает и параллельную ей плоскость β. Следовательно, и плоскость γ, в которой лежит прямая b, пересекает плоскость β.
НОМЕР 3
Проведем в плоскости α две пересекающиеся прямые a и b, а через точку А проведем прямые a1 и b1, соответственно параллельные прямым а и b. Рассмотрим плоскость β, проходящую через прямые a1 и b1. Плоскость β — искомая, так как она проходит через точку A и по признаку параллельности двух плоскостей параллельна плоскости α.
Теперь нужно доказать,что β — это будет единственная плоскость, проходящая через точку А и параллельная плоскости α. В самом деле, любая другая плоскость, проходящая через точку А, пересекает плоскость β, поэтому пересекает и параллельную ей плоскость α.
Полная площадь призмы равна сумме площадей двух оснований и площади боковой поверхности.
Пусть ребро призмы равно а.
Грани - квадраты, их 3.
S бок=3а²
S двух осн.=( 2 а²√3):4=( а²√3):2
По условию
3а²+(а²√3):2=8+16√3
Умножим обе стороны уравнения на 2 и вынесем а² за скобки: а²(6+√3)=16+32√3)=16(1+2√3)
а²=16(1+2√3):(6+√3)
Подставим значение а² в формулу площади правильного треугольника:
S=[16*(1+2√3):(6+√3)]*√3:4
S=4(√3+6):(6+√3)=4 (ед. площади)
Думаю, решение понятно. Перенести решение на листок для Вас не составит труда.
НОМЕР 1
Для начала рассмотрим произвольную плоскость β, параллельную плоскости α. Через какую-нибудь точку В плоскости β проведем прямую b, параллельную прямой а. Так как прямая а пересекает плоскость α, то прямая b также пересекает эту плоскость. Следовательно, прямая b пересекает плоскость β (а не будет лежать в ней). Поэтому прямая a также будет пересекать плоскость β.
НОМЕР 2(рисунок смотри ниже,самое первое фото)
Пусть плоскость γ будет пересекать плоскость α по прямой а. Докажем, что плоскость γ пересекает также плоскость β. Проведем в плоскости γ прямую b, пересекающую прямую a. Прямая b пересекает плоскость α, поэтому она пересекает и параллельную ей плоскость β. Следовательно, и плоскость γ, в которой лежит прямая b, пересекает плоскость β.
НОМЕР 3
Проведем в плоскости α две пересекающиеся прямые a и b, а через точку А проведем прямые a1 и b1, соответственно параллельные прямым а и b. Рассмотрим плоскость β, проходящую через прямые a1 и b1. Плоскость β — искомая, так как она проходит через точку A и по признаку параллельности двух плоскостей параллельна плоскости α.
Теперь нужно доказать,что β — это будет единственная плоскость, проходящая через точку А и параллельная плоскости α. В самом деле, любая другая плоскость, проходящая через точку А, пересекает плоскость β, поэтому пересекает и параллельную ей плоскость α.