В окружность с центром в точке О вписан △АВС.
∠ОСА = 37°
∠АВС - ?
Так как СО и ОА - радиусы данной окружности => СО = АО.
=> △СОА - равнобедренный => ∠ОСА = ∠ОАС = 37°, по свойству равнобедренного треугольника.
"Сумма углов треугольника равна 180°".
=> ∠СОА = 180° - (37° + 37°) = 106°
∠СОА - центральный.
"Центральный угол - угол, у которого вершина сам центр окружности".
"Центральный угол равен дуге, на которую он опирается".
=> дуга АС = 106°
∠АВС - вписанный.
"Вписанный угол - угол, у которого вершина находиться на окружности, а стороны пересекают окружность".
"Вписанный угол измеряется половиной дуги, на которую он опирается".
∠АВС опирается на ту же дугу, что и ∠СОА => ∠АВС = 106°/2 = 53°
#1
Р = 24см
S = ?см^2
Р = а × 4 => а = Р : 4
а = 24 : 4 = 6см
S = а × а
S = 6 × 6 = 36см^2
#2
а□1 = 5см
S□1 = ?см^2 <|
а□2 = 5см × 2 = 10см |
S□2 = ?см^2, в ? раз больше, чем __|
Найдем площадь первого квадрата.
S□1 = 5 × 5 = 25см^2
Теперь площадь второго квадата.
S□2 = 10 × 10 = 100см^2
Теперь нужно узнать "во сколько раз площадь первого квадрата, больше площади второго квадрата" то есть, нужно разделить.
100 : 25 = 4 То есть в 4 раза больше.
#3
АВ
| |
D||С
Сторона ОА =11см... ОА нету...
неправильное условие...
ответ: Ø
В окружность с центром в точке О вписан △АВС.
∠ОСА = 37°
Найти:∠АВС - ?
Решение:Так как СО и ОА - радиусы данной окружности => СО = АО.
=> △СОА - равнобедренный => ∠ОСА = ∠ОАС = 37°, по свойству равнобедренного треугольника.
"Сумма углов треугольника равна 180°".
=> ∠СОА = 180° - (37° + 37°) = 106°
∠СОА - центральный.
"Центральный угол - угол, у которого вершина сам центр окружности".
"Центральный угол равен дуге, на которую он опирается".
=> дуга АС = 106°
∠АВС - вписанный.
"Вписанный угол - угол, у которого вершина находиться на окружности, а стороны пересекают окружность".
"Вписанный угол измеряется половиной дуги, на которую он опирается".
∠АВС опирается на ту же дугу, что и ∠СОА => ∠АВС = 106°/2 = 53°
ответ: 53°#1
Р = 24см
S = ?см^2
Р = а × 4 => а = Р : 4
а = 24 : 4 = 6см
S = а × а
S = 6 × 6 = 36см^2
#2
а□1 = 5см
S□1 = ?см^2 <|
а□2 = 5см × 2 = 10см |
S□2 = ?см^2, в ? раз больше, чем __|
Найдем площадь первого квадрата.
S□1 = 5 × 5 = 25см^2
Теперь площадь второго квадата.
S□2 = 10 × 10 = 100см^2
Теперь нужно узнать "во сколько раз площадь первого квадрата, больше площади второго квадрата" то есть, нужно разделить.
100 : 25 = 4 То есть в 4 раза больше.
#3
АВ
| |
| |
D||С
Сторона ОА =11см... ОА нету...
неправильное условие...
ответ: Ø