По теореме о двух пересекающихся хордах произведение отрезков одной хорды равно произведению отрезков другой, пересекающейся с ней. Пусть коэффициент отношения СЕ:DE=x Тогда АЕ*ВЕ=3х*4х 12х² =108 х=3см CD=3x+4x=7х=7*3=21 см Наименьшим значением радиуса данной окружности будет половина большей из данных хорд при условии, что она - диаметр ( меньшая хорда по понятной причине не может быть диаметром). Следовательно, при диаметре АВ радиус r=(36+3):2=39:2=19,5 Если диаметр больше хорды АВ, то радиус не будет иметь наименьшее из возможных значений.
Відповідь:
Пояснення:
1: сумма 1 и 2 угла = 180, так как они относятся как 1 : 8 то: 180 : 9 = 20
следовательно угол 1 = 1 × 20 = 20°
угол 2 = 8 × 20 = 160
2: найдем угол B: 180 - (53 + 46) = 81. Следовательно внешний угол В = 360 - 81 = 279
3: Так как для треугольника MDE: DE - гипотенуза, DE больше за катет ME
4: рассмотрим треугольник ABC: угол В = 180 - (75+35) = 70°.
Рассмотрим треугольник DBC: так как DB это бисектриса угла B то в треугольнике
DBC угол В = 35°
Так как два угла в треугольнике DBC равны, а именно угол С и В то он равнобедренный.
Пусть коэффициент отношения СЕ:DE=x
Тогда АЕ*ВЕ=3х*4х
12х² =108
х=3см
CD=3x+4x=7х=7*3=21 см
Наименьшим значением радиуса данной окружности будет половина большей из данных хорд при условии, что она - диаметр ( меньшая хорда по понятной причине не может быть диаметром). Следовательно, при диаметре АВ радиус
r=(36+3):2=39:2=19,5
Если диаметр больше хорды АВ, то радиус не будет иметь наименьшее из возможных значений.