По условию углы при основании трапеции равны(т.к. она равнобедренная), следовательно в получившемся прямоугольном треугольнике, образованным диагональю, большим основанием и боковой стороной острые углы равны 60 гр. и 30 гр. Боковая сторона этого треугольника есть катет, лежащий против угла в 30 гр., следовательно он равен произведению другого катета и tg 30. Получаем 6*tg 30=6*V3/3=2V3 Следовательно боковые стороны и меньшее основание равны 2V3. Найдем большее основание. Оно есть гипотенуза в образованном прямоугольном треугольнике. Боковая сторона есть катет, лежащий против угла в 30 гр., следовательно она меньше гипотенузы в два раза. Т.о. большее основание равно двум боковым сторонам, т.е. 2*2V3=4V3. Далее находим периметр. Большее основание равно 6
1) Из равенства и параллельности AD=BC, AB=CD делаем вывод, что ABCD - параллелограмм. В нём <BDC=<ABD как накрест лежащие углы при параллельных отрезках AB и CD
2) Рассмотрим тр-ки BPC и DMA. У них AD=BC по условию, <BCP=<DAM как равные при проведении биссектрис от равных углов параллелограмма. А <PBC=<MDA как накрест лежащие при параллельных отрезках AD и BC. Значит тр-ки BPC и DMA равны по 2-му признаку и стало быть DM=BP=3см.
Получаем 6*tg 30=6*V3/3=2V3
Следовательно боковые стороны и меньшее основание равны 2V3.
Найдем большее основание. Оно есть гипотенуза
в образованном прямоугольном треугольнике. Боковая сторона есть катет, лежащий против угла в 30 гр., следовательно она меньше гипотенузы в два раза. Т.о. большее основание равно двум боковым сторонам, т.е. 2*2V3=4V3. Далее находим периметр.
Большее основание равно 6
DM=3см, <BDC=25гр
Объяснение:
Странная задача, считать ничего и не надо.
1) Из равенства и параллельности AD=BC, AB=CD делаем вывод, что ABCD - параллелограмм. В нём <BDC=<ABD как накрест лежащие углы при параллельных отрезках AB и CD
2) Рассмотрим тр-ки BPC и DMA. У них AD=BC по условию, <BCP=<DAM как равные при проведении биссектрис от равных углов параллелограмма. А <PBC=<MDA как накрест лежащие при параллельных отрезках AD и BC. Значит тр-ки BPC и DMA равны по 2-му признаку и стало быть DM=BP=3см.