В призме АВСА₁В₁С₁ точки О₁ и О₂ - центры описанных около оснований окружностей. Для правильного треугольника радиус описанной окружности: Rо=a√3/3 ⇒ R=АО₂=А₁О₁=5/√3. Точка О - центр шара. Окружности, описанные около оснований призмы лежат на поверхности окружности. Плоскость РКМ проходит через середину высоты призмы и параллельна её основаниям. ΔРКМ=ΔАВС. Плоскости АВС и А₁В₁С₁ параллельны, и равноудалены от плоскости РКМ, значит плоскость РКМ пересекает поверхность шара по окружности, центр которой лежит на прямой О₁О₂. в точке О. В прямоугольном тр-ке AОО₂ АО=Rш=8, АО₂=Rо=5/√3. ОО₂²=АО²-АО₂²=64-25/3=167/3. h=О₁О₂=2·ОО₂=2√(167/3)≈14.9 - это ответ.
Периметр треугольника равен P = a + b + c, радиус вписанной окружности в прямоугольный треугольник равен r = (a + b - c)/2, где а и b - катеты, c - гипотенуза
Составим систему из двух выражений: a + b + c = 36 (a + b - c) = 3,5
a + b + c = 36 a + b - c = 7 Выполни вычитание первого выражения на второе: a - a + b - b + c + c = 36 - 7 2c = 29 c = 14,5 Значит, гипотенуза равна 14,5 см. В прямоугольной треугольнике радиус описанной окружности равен половине гипотерузе. Значит, R = 1/2•14,5 м = 7,25 см. ответ: 7,25 см.
Для правильного треугольника радиус описанной окружности: Rо=a√3/3 ⇒ R=АО₂=А₁О₁=5/√3.
Точка О - центр шара.
Окружности, описанные около оснований призмы лежат на поверхности окружности.
Плоскость РКМ проходит через середину высоты призмы и параллельна её основаниям. ΔРКМ=ΔАВС.
Плоскости АВС и А₁В₁С₁ параллельны, и равноудалены от плоскости РКМ, значит плоскость РКМ пересекает поверхность шара по окружности, центр которой лежит на прямой О₁О₂. в точке О.
В прямоугольном тр-ке AОО₂ АО=Rш=8, АО₂=Rо=5/√3.
ОО₂²=АО²-АО₂²=64-25/3=167/3.
h=О₁О₂=2·ОО₂=2√(167/3)≈14.9 - это ответ.
Составим систему из двух
выражений:
a + b + c = 36
(a + b - c) = 3,5
a + b + c = 36
a + b - c = 7
Выполни вычитание первого выражения на второе:
a - a + b - b + c + c = 36 - 7
2c = 29
c = 14,5
Значит, гипотенуза равна 14,5 см.
В прямоугольной треугольнике радиус описанной окружности равен половине гипотерузе. Значит, R = 1/2•14,5 м = 7,25 см.
ответ: 7,25 см.