Получается тедо, состоящее из двух одинаковых конусов с углом при вершине 60 и образующей a (см. рис.).
Рассмотрим треугольник ABC, являющийся осевым сечением "верхнего" конуса. Угол B = 60 градусов, стороны AB и BC равны. Значит, треугольник ABC - равнобедренный. Углы A и C равны.
A = C = (180-60):2 = 120:2 = 60
Все углы ABC равны 60 градусов. Треугольник правильный (равносторонний). AC = a см.
Площадь поверхности вращения равна сумме площадей боковых поверхностей конусов. Радиус основания равен AC/2 = a/2 см.\
Sпов = 2*Sбок = 2*П*R*l = 2*П*a/2*a = Пa^2 кв.см.
П - это "пи"
Ромб с острым углом а , равным 60°и стороной а вращается около большой диагонали. найти площадь пове
Получается тедо, состоящее из двух одинаковых конусов с углом при вершине 60 и образующей a (см. рис.).
Рассмотрим треугольник ABC, являющийся осевым сечением "верхнего" конуса. Угол B = 60 градусов, стороны AB и BC равны. Значит, треугольник ABC - равнобедренный. Углы A и C равны.
A = C = (180-60):2 = 120:2 = 60
Все углы ABC равны 60 градусов. Треугольник правильный (равносторонний). AC = a см.
Площадь поверхности вращения равна сумме площадей боковых поверхностей конусов. Радиус основания равен AC/2 = a/2 см.\
Sпов = 2*Sбок = 2*П*R*l = 2*П*a/2*a = Пa^2 кв.см.
П - это "пи"
Ромб с острым углом а , равным 60°и стороной а вращается около большой диагонали. найти площадь пове
Объяснение:
вроде так ☺️
A1. Две прямые на плоскости называются параллельными, если они:
4) не пересекаются
А2. Один из признаков параллельности двух прямых гласит:
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны
А3. Выберите утверждение, являющееся аксиомой параллельных прямых:
Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной
А4. Если две параллельные прямые пересечены секущей, то:
Соответственные углы равны
А5. Если прямая перпендикулярна одной из двух параллельных прямых, то:
Она перпендикулярна и другой
А6. Всякая теорема состоит из нескольких частей:
Условия и заключения
А7. При пересечении двух прямых секущей образуются углы, имеющие специальные названия:
Накрест лежащие, соответственные, односторонние
А8. Аксиома – это:
Положение геометрии, не требующее доказательства
А9. Выберите утверждение, которое является признаком параллельности прямых:
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны
А10. Если прямая не пересекает одну из двух параллельных прямых, то:
Другую прямую она тоже не пересекает
или
С другой прямой она совпадает