2. Площа ромба з периметром Т2 см і висотою 7 см дорівнює
площі прямокутника, одна зі сторін якого дорівнює 14 см.
Знайдіть периметр прямокутника.
3. Тупий кут паралелограма дорівнює 1357, Висота, проведена
з вершини цього кута, ділить сторону на відрізки завдовж-
ки 4 см і 2 см, починаючи від вершини гострого кута. Зна-
йдіть площу паралелограма.
4. Сторони прямокутника відносяться як 3:4, а довжина
перпендикуляра, проведеного з вершини прямокутника
до діагоналі, дорівнює 24 см. Знайдіть площу прямокутника.
1) ABCD - ромб , AB=BC=CD=AD=4 см , ВМ=2√3 см ,
∠АВС=150° ⇒ ∠BAD=180°-150°=30°
Проведём ВН⊥AD , ∠BHA=90° .
Из ΔАВН: ВН=АВ*sin30°=4*(1/2)=2 (см) .
МВ⊥ пл. АВСD ⇒ МВ⊥ любой прямой, лежащей в пл. ABCD ⇒
MB⊥BH ⇒ ΔАВН - прямоугольный , ∠МВН=90° ⇒ ΔМВН - прямоугольный.
Проведём отрезок МН, он будет наклонной, ВН - его проекция на плоскость АВСD , причём проекция ВН ⊥АD ⇒ по теореме о трёх перпендикулярах МН⊥AD , значит МН - расстояние от точки М до прямой AD.
МН найдём из прямоугольного ΔВНМ по теореме Пифагора:
МН=√(ВН²+ВМ²)=√(4+4*3)=√16=4 (см) .
Из условия нам известно, что катеты прямоугольного треугольника равны √7 см и 3 см.
Для того чтобы найти гипотенузу треугольника мы будем использовать теорему Пифагора.
Вспомним ее.
Квадрат гипотенузы равен сумме квадратов катетов.
a2 + b2 = c2.
Подставим известные значения и решим полученное уравнение.
(√7)2 + 32 = x2;
7 + 9 = x2;
x2 = 16;
Извлечем квадратный корень из обеих частей уравнения и получим:
x1 = 4; x2 = -4.
Второй корень не подходит, так как длина катета не может быть отрицательным числом.
ответ: 4.
должно быть верно)