1) В прямоугольном треугольнике АВС из вершины прямого угла С проведем к гипотенузе AB отрезок CO так, чтобы CO=OA.
2) ∆ AOC — равнобедренный с основанием AC (по определению равнобедренного треугольника).
Значит, у него углы при основании равны:∠OAC=∠OCA=α.
3) Так как сумма острых углов прямоугольного треугольника равна 90º, то в треугольнике ABC ∠B=90º- α.
4) Так как ∠BCA=90º (по условию), то ∠BCO=90º- ∠OCA=90º-α.
5) Рассмотрим треугольник BOC.
∠BCO=90º-α, ∠B=90º- α, следовательно, ∠BCO=∠B.
Значит, треугольник BOC — равнобедренный с основанием BC (по признаку равнобедренного треугольника).
Отсюда BO=CO.
6) Так как CO=OA (по построению) и BO=CO (по доказанному), то CO=OA=BO, AB=OA+BO=2∙OA=2∙CO.
Таким образом, точка O — середина гипотенузы AB, отрезок CO соединяет вершину треугольника с серединой противолежащей стороны, значит, CO — медиана, проведенная к гипотенузе, и она равна половине гипотенузы
Рассмотрим произвольный равнобедренный треугольник АВС с основанием АВ. Пусть одна высота из угла А- это АК, а из угла В- ВМ. Рассмотрим треугольники АМВ и АКВ. у.(угол) А=у. В (т.к. треугольник АВС равнобедренный) у. АМВ= у. АКВ (т.к. АК и ВМ- высоты; у. АМВ= у. АКВ= 90) Из теоремы о сумме углов треугольника следует, что: у. АМВ+ у. А+ у. МВА= 180 у. АКВ+ у. В+ у. КАВ= 180 Но у. АМВ= у. АКВ и у. А=у. В. Значит у. МВА=у. КАВ. АВ- общая сторона, а значит равная в обоих треугольниках. треугольник АМВ = треугольнику АКВ (по стороне и двум прилежащим к ней углам) В равных треугольниках соответственные элементы равны, следовательно: АК=МВ. ЧТД
1) В прямоугольном треугольнике АВС из вершины прямого угла С проведем к гипотенузе AB отрезок CO так, чтобы CO=OA.
2) ∆ AOC — равнобедренный с основанием AC (по определению равнобедренного треугольника).
Значит, у него углы при основании равны:∠OAC=∠OCA=α.
3) Так как сумма острых углов прямоугольного треугольника равна 90º, то в треугольнике ABC ∠B=90º- α.
4) Так как ∠BCA=90º (по условию), то ∠BCO=90º- ∠OCA=90º-α.
5) Рассмотрим треугольник BOC.
∠BCO=90º-α, ∠B=90º- α, следовательно, ∠BCO=∠B.
Значит, треугольник BOC — равнобедренный с основанием BC (по признаку равнобедренного треугольника).
Отсюда BO=CO.
6) Так как CO=OA (по построению) и BO=CO (по доказанному), то CO=OA=BO, AB=OA+BO=2∙OA=2∙CO.
Таким образом, точка O — середина гипотенузы AB, отрезок CO соединяет вершину треугольника с серединой противолежащей стороны, значит, CO — медиана, проведенная к гипотенузе, и она равна половине гипотенузы
Пусть одна высота из угла А- это АК, а из угла В- ВМ.
Рассмотрим треугольники АМВ и АКВ.
у.(угол) А=у. В (т.к. треугольник АВС равнобедренный)
у. АМВ= у. АКВ (т.к. АК и ВМ- высоты; у. АМВ= у. АКВ= 90)
Из теоремы о сумме углов треугольника следует, что:
у. АМВ+ у. А+ у. МВА= 180
у. АКВ+ у. В+ у. КАВ= 180
Но у. АМВ= у. АКВ и у. А=у. В. Значит у. МВА=у. КАВ.
АВ- общая сторона, а значит равная в обоих треугольниках.
треугольник АМВ = треугольнику АКВ (по стороне и двум прилежащим к ней углам)
В равных треугольниках соответственные элементы равны, следовательно:
АК=МВ.
ЧТД