Пусть О - центр окружности, описанной около ΔАВС. Рассмотрим ΔАОВ: ОА=ОС=r, значит ΔАОВ -равнобедренный (впоследствии он окажется и равносторонним, но это при решении данной задачи значения не имеет). Точка Н- середина стороны АВ, через неё проведён серединный перпендикуляр ОН, который является медианой, биссектрисой и высотой. Так как Н- середина стороны АВ, то АН=НВ=120. ∠АСВ=30° является вписанным углом, опирающимся на дугу АВ, значит градусная мера дуги АВ=60° ∠АОВ при этом является центральным углом, опирающимся на дугу АВ, значит ∠АОВ=60° Рассмотрим Δ ОНВ: он прямоугольный, т.к. ОН⊥АВ; ∠НОВ=30°, т.к. ОН является и биссектрисой; а НВ=120 это катет, лежащий против угла в 30°. Значит
...Ну и как "Лучший ответ" не забудь отметить, ОК?!.. ;)
1) Из прямоугольного труугольника, сторонами которого являются сторона основания и половины диагоналей по т. Пифагора находим сторону основания :
С боковым ребром диагональ боковой грани образует угол 90-60=30°, значит диагональ боковой грани в два раза больше стороны основания, т. е 34 см По т. Пифагора находим боковое ребро :
Площадь боковой поверхности призмы равна:
2) Найдём площадь основания призмы (площадь Δ-ка), применив формулу Герона (мою любимую ))))) ): , где - полупериметр, - стороны.
Находим боковое ребро :
Как-то так...
...Ну и как "Лучший ответ", я надеюсь, не забудешь отметить, ОК?!.. ;)
Рассмотрим ΔАОВ:
ОА=ОС=r, значит ΔАОВ -равнобедренный (впоследствии он окажется и равносторонним, но это при решении данной задачи значения не имеет). Точка Н- середина стороны АВ, через неё проведён серединный перпендикуляр ОН, который является медианой, биссектрисой и высотой.
Так как Н- середина стороны АВ, то АН=НВ=120.
∠АСВ=30° является вписанным углом, опирающимся на дугу АВ, значит градусная мера дуги АВ=60°
∠АОВ при этом является центральным углом, опирающимся на дугу АВ, значит ∠АОВ=60°
Рассмотрим Δ ОНВ: он прямоугольный, т.к. ОН⊥АВ; ∠НОВ=30°, т.к. ОН является и биссектрисой; а НВ=120 это катет, лежащий против угла в 30°.
Значит
...Ну и как "Лучший ответ" не забудь отметить, ОК?!.. ;)
С боковым ребром диагональ боковой грани образует угол 90-60=30°, значит диагональ боковой грани в два раза больше стороны основания, т. е 34 см
По т. Пифагора находим боковое ребро :
Площадь боковой поверхности призмы равна:
2) Найдём площадь основания призмы (площадь Δ-ка), применив формулу Герона (мою любимую ))))) ):
, где
- полупериметр, - стороны.
Находим боковое ребро :
Как-то так...
...Ну и как "Лучший ответ", я надеюсь, не забудешь отметить, ОК?!.. ;)