2. Средняя линия равнобедренного треугольника, параллельная основанию, равна 6 см, Найдите стороны треугольника, если его периметр равен 32 см. 3. Сторона АВ треугольника АВС равна 6 см. Сторона ВС разделена на 3 равные части и через точки деления проведены прямые, параллельные стороне АС. Найдите длины отрезков этих прямых, содержащихся между сторонами треугольника.
4. В параллелограмме ABCD угол А равен 30°. Высота ВЕ делит сторону AD на две равные части. Найдите длину диагонали BD, если периметр параллелограмма равен 24 см.
5. В равнобокой трапеции один из углов равен 140°, диагональ трапеции образует с основанием угол 60". Найдите основания трапеции, если ее боковая сторона равна 4 см.
АС1/С1В=1/1, ВА1/А1С=3/7, АВ1/В1С=1/3, S A1B1C1=S ABC - S AC1B1 - S C1BA1 - S A1CB1, обе части уравнения делим на S ABC
S A1B1C1 / S ABC = 1 - (S AC1B1/S ABC) - (S C1BA1/ S ABC) - (S A1CB1/S ABC)
S ABC=1/2*AB*AC*sinA, S AB1C1=1/2*AC1*AB1*sinA, AB=AC1+C1B=1+1=2, AC=AB1+B1C=1+3=4, S AB1C1/S ABC=(AC1*AB1)/(AB*AC)=(1*1)/(2*4)=1/8,
S ABC=1/2*AB*BC*sinB, S C1BA1=1/2*C1B*BA1*sinB, BC=BA1+A1C=3+7=10,
S C1BA1/S ABC=(C1B*BA1)/(AB*BC)=(1*3)/(2*10)=3/20,
S ABC=1/2*AC*BC*sinC, S A1CB1=1/2*A1C*B1C*sinC, S A1CB/S ABC=(A1C*B1C) / (AC*BC)=(7*3)/(4*10)=21/40,
S A1B1C1/S ABC=1-1/8-3/20-21/40=8/40=1/5, или S ABC/S A1B1C1=5/1
Найдем сторону квадрата:
BD²=2BC², (4√2)²=2BC², BC²= 16·2/2=16, BC=4
ИЗ треугольника SBD ( треугольник SBD прямоугольный так как SB перпендикулярно плоскости основания) найдем SB:
SB²=SD²-BD²
SB²=(4√5)²-(4√2)²= 16·5-16·2=80-32=48, SB=√48=4√3.
Из треугольника SBC : tg∠SCB=SB/BC=4√3/4=√3
tg∠SCB=√3, ∠SCB=60 градусов