Радиус вписанной окружности в данный треугольник равен 2-м единицам.
Объяснение:
Правильный треугольник - треугольник, стороны которого равны между собой и все углы равны 60 градусам.
Формула площади треугольника, в который вписана окружность: S = pr, где r - радиус данной окружности, p - полупериметр.
S = pr <=> r = S / p
Площадь данного треугольника можно вычислить по формуле: S = 0,5 * a² * sin(60°)
Полупериметр данного треугольника можно вычислить по формуле: p = 3*a / 2
r = 0,5 * a² * sin(60°) / (3*a / 2) = 0,5 * a² * sin(a) * 2 / 3*a = a * sin(a) / 3
Подставляем и находим:
r = 4√3 * (√3/2) / 3 = 2 * √3 * √3 / 3 = 2 * 3 / 3 = 2 (единиц)
ответ: r = 2 ед.
3.Пусть угол ВАО = å, тогда угол DAO тоже å
Пусть угол АВО = b, тогда угол СВО тоже b
У параллелограмма сумма двух соседствующих углов = 180°
=> 2å + 2b = 180°, сократим вдвое:
å + b = 90° ( угол ВАО + угол АВО )
Тогда: В треугольнике АВО угол АОВ = 180° - (угол ВАО + угол АВО) = 180° - 90° = 90° что и требовалось доказать.
6.АВСД - параллелограмм, тогда АВ || СД, ВС || АД. АВ=СД ВС=АД
Угол АВР = углу СРВ ( накрест лежащие углы при АВ || СД, ВР секущая )
Тогда треугольник РВС - равнобедренный, тогда ВС = СР = 4
АВ=СД, СД = 4+1=5 тогда они равны 5
АД=ВС, ВС = 4, тогда они равны 4
Периметр: 4 + 4 + 5 + 5 = 18см
9. треугольник АКВ - равнобедренный, тогда угол АКВ = углу АВК = 50°, тогда угол А = 180° - (угол АКВ + угол АВК) = 180° - 100° = 80°
Две соседствующие углы в параллелограмме в сумме дают 180°,
тогда угол В = 180° - 80° = 100°.
Противорасположные углы в параллелограмме равны, тогда уголА = углуС = 80°
уголВ = углуД = 100°
ответы: 6)18см
9)уголА = 80°
уголВ = 100°
уголС = 80°
уголД = 100°
Радиус вписанной окружности в данный треугольник равен 2-м единицам.
Объяснение:
Правильный треугольник - треугольник, стороны которого равны между собой и все углы равны 60 градусам.
Формула площади треугольника, в который вписана окружность: S = pr, где r - радиус данной окружности, p - полупериметр.
S = pr <=> r = S / p
Площадь данного треугольника можно вычислить по формуле: S = 0,5 * a² * sin(60°)
Полупериметр данного треугольника можно вычислить по формуле: p = 3*a / 2
r = 0,5 * a² * sin(60°) / (3*a / 2) = 0,5 * a² * sin(a) * 2 / 3*a = a * sin(a) / 3
Подставляем и находим:
r = 4√3 * (√3/2) / 3 = 2 * √3 * √3 / 3 = 2 * 3 / 3 = 2 (единиц)
ответ: r = 2 ед.
3.Пусть угол ВАО = å, тогда угол DAO тоже å
Пусть угол АВО = b, тогда угол СВО тоже b
У параллелограмма сумма двух соседствующих углов = 180°
=> 2å + 2b = 180°, сократим вдвое:
å + b = 90° ( угол ВАО + угол АВО )
Тогда: В треугольнике АВО угол АОВ = 180° - (угол ВАО + угол АВО) = 180° - 90° = 90° что и требовалось доказать.
6.АВСД - параллелограмм, тогда АВ || СД, ВС || АД. АВ=СД ВС=АД
Угол АВР = углу СРВ ( накрест лежащие углы при АВ || СД, ВР секущая )
Тогда треугольник РВС - равнобедренный, тогда ВС = СР = 4
АВ=СД, СД = 4+1=5 тогда они равны 5
АД=ВС, ВС = 4, тогда они равны 4
Периметр: 4 + 4 + 5 + 5 = 18см
9. треугольник АКВ - равнобедренный, тогда угол АКВ = углу АВК = 50°, тогда угол А = 180° - (угол АКВ + угол АВК) = 180° - 100° = 80°
Две соседствующие углы в параллелограмме в сумме дают 180°,
тогда угол В = 180° - 80° = 100°.
Противорасположные углы в параллелограмме равны, тогда уголА = углуС = 80°
уголВ = углуД = 100°
ответы: 6)18см
9)уголА = 80°
уголВ = 100°
уголС = 80°
уголД = 100°