Проведем сечение пирамиды через высоту и cередину стороны основания. Получим сечение шара в виде круга, который касается основания в его центре Н и касается апофемы в точке К. ОН и ОК - радиусы шара, равны r. ОМ - биссектриса угла α.
r/tgα/2 =HM. Это радиус окружности, вписанной в основание пирамиды, значит сторона основания а = НМ*√3 = r√3/tgα/2.
Площадь треугольника равна а²√3/4 = 3√3r²/4tg²α/2.
Проведем сечение пирамиды через высоту и cередину стороны основания. Получим сечение шара в виде круга, который касается основания в его центре Н и касается апофемы в точке К. ОН и ОК - радиусы шара, равны r. ОМ - биссектриса угла α.
r/tgα/2 =HM. Это радиус окружности, вписанной в основание пирамиды, значит сторона основания а = НМ*√3 = r√3/tgα/2.
Площадь треугольника равна а²√3/4 = 3√3r²/4tg²α/2.
Высоту пирамиды находим из треугольника НМS,
HS=HM*tgα = rtgα / tgα/2.
Теперь объем v= 1/3 * 3√3r²/ 4tg²α/2 * rtgα/tgα/2 = r³√3 tgα/4tg³α/2.
қиық пирамида көлемі
V=7√3 /36 см³
а2=2см
а1=1 см
α=30°
V- ?
қиық пирамида төменгі табанындағы дұрыс үшбұрыштың сырттай сызылған шеңбердің радиусы
Rт=a2/√3=2/√3 см
жоғарғы
Rж=а1/√3=1/√3 см
пирамида қиылмаған жағдайдағы биіктігі (пирамида төбесінен төмендегі табанға дейінгі )
Hтөм= tgα×Rт=tg30° ×2/√3=√3/3 × 2/√3=2/3 см
жоғарғы табан биіктігі
Hжоғ=tgα×Rж=tg30°×1/√3 =√3/3 × 1/√3=1/3 см
қиылған пирамида биіктігі
Hқ=Нтөм- Нжоғ=2/3 - 1/3 = (2 - 1)/3=1/3 см
жоғарғы табан ауданы ( дұрыс тең қабырғалы үшбұрыштың ауданы формуласымен )
S1=a²√3 /4= 1² ×√3 /4= √3 /4 см²
төменгі табан ауданы
S2=а²√3 /4=2²×√3 /4= 4×√3 /4=√3 см²
қиық пирамида көлемі
V=1/3 × H×(S1+√S1×S2 + S2)
V=1/3 × 1/3×(√3/4 + √(√3/4 × √3) + √3 )=
=1/9×(√3 /4 +√3 /2 + √3)=1/9×( (√3 +2√3 + 4√3)/4 )=
=1/9 × 7√3/ 4=7√3 /36 см³