Сделаем и рассмотрим рисунок. Отметим центр окружности О. ОА=ОС=R.
Основание треугольника АС равно радиусу окружности. АС=R ⇒
∆ АОС - равносторонний, все его углы равны 60°.
Дуга окружности, на которую опирается центральный угол, равна его градусной мере. ◡ АС = ∠ АОС=60°. Полная окружность содержит 360°. ⇒ ◡АВ+ ◡СВ=360°-60°=300°. Т.к. ∆ АВС равнобедренный. хорды АВ=СВ. Равные хорды стягивают равные дуги. ◡АВ=◡СВ=300°:2=150°
3)
LM=R, OL=OM=R =>
∆ LOM- равносторонний.
Диаметр, проведенный перпендикулярно хорде, делит ее пополам. AL=AM=12,4 =>LM=2•12,4=24,8 см
1. Построила на рисунке. Масштаб фотографии разный у всех, я взяла длину основания 4см и длину биссектрисы 3см. Свойством пользовалась тем, что в равнобедренном треугольнике биссектриса, проведённая к основанию, является его медианой. Построила медиану по алгоритму построения середины отрезка.
2. Треугольник равнобедренный, т.к. ВО⊥АС, угол АВО=СВО, АО=ОС. Можно измерить сторону и биссектрису. Всё соблюдается.
3. Задача будет иметь решение в том случае, если при построении сумма двух любых сторон треугольника будет больше длины третьей стороны. Т.е. основание не должно быть дано длиннее, чем сумма боковых сторон.
1)
Треугольник AOB - Равнобедреный (т.к.АО=ОB) =>
угол OBA=30 °
OA- Радиус
OA ⊥ac
угол BAC=90°-30°=60°
ОТВЕТ:60°
надеюсь правильно
2)
◡АС=60°;◡АВ=◡СВ=150°
* * *
Сделаем и рассмотрим рисунок. Отметим центр окружности О. ОА=ОС=R.
Основание треугольника АС равно радиусу окружности. АС=R ⇒
∆ АОС - равносторонний, все его углы равны 60°.
Дуга окружности, на которую опирается центральный угол, равна его градусной мере. ◡ АС = ∠ АОС=60°. Полная окружность содержит 360°. ⇒ ◡АВ+ ◡СВ=360°-60°=300°. Т.к. ∆ АВС равнобедренный. хорды АВ=СВ. Равные хорды стягивают равные дуги. ◡АВ=◡СВ=300°:2=150°
3)
LM=R, OL=OM=R =>
∆ LOM- равносторонний.
Диаметр, проведенный перпендикулярно хорде, делит ее пополам. AL=AM=12,4 =>LM=2•12,4=24,8 см
D (EK)=2R=49,6 см
P(LOM)=3•LM=74,4 см
4) ΔABC - прямоугольный; ∠C = 90°; ∠B = 30°; AB = 10
Катет AC лежит против угла 30° ⇒ равен половине гипотенузы AB:
AC = AB/2 = 10 /2 = 5
Проведена окружность с центром в точке А
а) радиус в точку касания образует с касательной угол 90°.
a) Радиус равен АС = 5
б) радиус меньше 5
в) радиус больше 5
5 картинка
1. Построила на рисунке. Масштаб фотографии разный у всех, я взяла длину основания 4см и длину биссектрисы 3см. Свойством пользовалась тем, что в равнобедренном треугольнике биссектриса, проведённая к основанию, является его медианой. Построила медиану по алгоритму построения середины отрезка.
2. Треугольник равнобедренный, т.к. ВО⊥АС, угол АВО=СВО, АО=ОС. Можно измерить сторону и биссектрису. Всё соблюдается.
3. Задача будет иметь решение в том случае, если при построении сумма двух любых сторон треугольника будет больше длины третьей стороны. Т.е. основание не должно быть дано длиннее, чем сумма боковых сторон.