2. В треугольнике АВС внутренний угол при вершине А равен 63 градуса, а внешний угол при вершине В равен 150 градусов. Найдите внешний угол при вершине С.
По свойству биссектрисы AR/AB = RC/BC AR/AB = (AC - AR)/BC AR = 35/11; RC = 42/11 AP/AC = (AB - AP)/BC AP = 35/13; BP = AB - AP = 30/13 BQ/AB = (BC - BQ)/AC BQ = 5/2; QC = BC - BQ = 7/2 S = S(ABC) = 6√6 (по формуле Герона) S(PQR) = S - S(APR) - S(PBQ) - S(RQC) S(ABC)/S(APR) = (AB·AC)/(AP·AR) (если угол одного треугольника равен углу другого треугольника, то площади этих треугольников относятся как произведения сторон, заключающих равные углы) S(APR) = S(ABC)·AP·AR/(AB·AC) = S·35/143 аналогично находятся S(RQC) = S·7/22 и S(PBQ) = S·5/26 S(PQR) = (210√6)/143
В правильном шестиугольнике все стороны равны АВ=ВС=СD=DE=EF=1. а также все углы равны 120°. Получается треугольник АВС - равнобедренный АВ=ВС и углы при основании равны <ВАС=<ВСА=(180-<АВС)/2=(180-120)/2=30°. Опустим в треугольнике АВС высоту ВН, она же будет и высотой, и медианой. Центр вписанной окружности будет лежать на ВН. Из прямоугольного треугольника АВН высота ВН=АВ/2=1/2=0,5 (катет, лежащий против угла в 30°, равен половине гипотенузы). Тогда АН=√(АВ²-ВН²)=√(1-0,25)=√0,75=√3/2, значит сторона АС=2АН=√3. Полупериметр треугольника АВС р=(2АВ+АС)/2=1+√3/2 Радиус вписанной окружности R R²=(р-АВ)²(р-АС)/р=(1+√3/2-1)²(1+√3/2-√3) / (1+√3/2)=3/4*(1-√3/2) / (1+√3/2) R=√(3/4*(1-√3/2) / (1+√3/2))=√3/2*√(1-√3/2)(1+√3/2) / (1+√3/2)²=√3/2(1+√3/2) * √(1-3/4)=√3 / (4+2√3)
AR/AB = RC/BC
AR/AB = (AC - AR)/BC
AR = 35/11; RC = 42/11
AP/AC = (AB - AP)/BC
AP = 35/13; BP = AB - AP = 30/13
BQ/AB = (BC - BQ)/AC
BQ = 5/2; QC = BC - BQ = 7/2
S = S(ABC) = 6√6 (по формуле Герона)
S(PQR) = S - S(APR) - S(PBQ) - S(RQC)
S(ABC)/S(APR) = (AB·AC)/(AP·AR) (если угол одного треугольника равен углу другого треугольника, то площади этих треугольников относятся как произведения сторон, заключающих равные углы)
S(APR) = S(ABC)·AP·AR/(AB·AC) = S·35/143
аналогично находятся S(RQC) = S·7/22 и S(PBQ) = S·5/26
S(PQR) = (210√6)/143
Получается треугольник АВС - равнобедренный АВ=ВС и углы при основании равны <ВАС=<ВСА=(180-<АВС)/2=(180-120)/2=30°.
Опустим в треугольнике АВС высоту ВН, она же будет и высотой, и медианой. Центр вписанной окружности будет лежать на ВН.
Из прямоугольного треугольника АВН высота ВН=АВ/2=1/2=0,5 (катет, лежащий против угла в 30°, равен половине гипотенузы).
Тогда АН=√(АВ²-ВН²)=√(1-0,25)=√0,75=√3/2, значит сторона АС=2АН=√3.
Полупериметр треугольника АВС р=(2АВ+АС)/2=1+√3/2
Радиус вписанной окружности R
R²=(р-АВ)²(р-АС)/р=(1+√3/2-1)²(1+√3/2-√3) / (1+√3/2)=3/4*(1-√3/2) / (1+√3/2)
R=√(3/4*(1-√3/2) / (1+√3/2))=√3/2*√(1-√3/2)(1+√3/2) / (1+√3/2)²=√3/2(1+√3/2) * √(1-3/4)=√3 / (4+2√3)