Рисунок вам нарисовала. Там все ясно-понятно. Треугольник FAB равносторонний. Все стороны равны, все углы по 60, такой вывод делаем из условия. Сторону этого треугольника обозначаем х. Δ FMA: М = 90 FM - бисектриса, медиана, высота FM = хsina = x√3/2 Чтобы найти угол между мимобегущими, нужно найти угол между паралельными им прямыми, которые пересекаются. Перенесем AC в ML, это будет средняя линия треугольника ABC Чтобы узнать AC найдем диагональ квадрата d² = 2a² Сторона у нас х d² = 2x² d = x√2 ML = x√2/2 ΔFMO₁ (O₁ = 90) MO₁ = x√2/4 MO₁/FM = cos a = x√2/4/x√3/2 = √2/2√3 = √6/6 Не знаю, почему значение не табличное, может я ошиблась, но вроде все правильно было :)
Построим сумму векторов а и b и их разность. ↑АС = ↑р = ↑а + ↑b ↑DB = ↑q = ↑a - ↑b Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А. ∠ЕАС - искомый. Из ΔABD найдем длину вектора q по теореме косинусов: |↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49 |↑q| = 7 Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°. Из ΔABС найдем длину вектора р по теореме косинусов: |↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129 |↑p| = √129
Из ΔЕАС по теореме косинусов: cos α = (AE² + AC² - EC²) / (2 · AE · AC) cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903 cos α = - 13√129/301
Треугольник FAB равносторонний. Все стороны равны, все углы по 60, такой вывод делаем из условия. Сторону этого треугольника обозначаем х.
Δ FMA: М = 90 FM - бисектриса, медиана, высота
FM = хsina = x√3/2
Чтобы найти угол между мимобегущими, нужно найти угол между паралельными им прямыми, которые пересекаются.
Перенесем AC в ML, это будет средняя линия треугольника ABC
Чтобы узнать AC найдем диагональ квадрата
d² = 2a²
Сторона у нас х
d² = 2x²
d = x√2
ML = x√2/2
ΔFMO₁ (O₁ = 90)
MO₁ = x√2/4
MO₁/FM = cos a = x√2/4/x√3/2 = √2/2√3 = √6/6
Не знаю, почему значение не табличное, может я ошиблась, но вроде все правильно было :)
↑АС = ↑р = ↑а + ↑b
↑DB = ↑q = ↑a - ↑b
Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А.
∠ЕАС - искомый.
Из ΔABD найдем длину вектора q по теореме косинусов:
|↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49
|↑q| = 7
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°.
Из ΔABС найдем длину вектора р по теореме косинусов:
|↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129
|↑p| = √129
Из ΔЕАС по теореме косинусов:
cos α = (AE² + AC² - EC²) / (2 · AE · AC)
cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903
cos α = - 13√129/301