пусть имеем треугольник abc, ch- высота и cm - медиана
угол мсн = 76 градусов по условию
в прямоугольном треугольнике сmn cумма острых углов смн, мсн равна 90 градусов, то есть угол смн = 90 – угол мсн = 90 – 76 = 14 градусов
треугольник амс равнобедренный, см равна половине гипотенузы , а ам равна половине гипотенузы, так как см - медиана. отсюда следствие, что угол саm равен углу асм по свойству углов при основании равнобедренного треугольника.
пусть имеем треугольник abc, ch- высота и cm - медиана
угол мсн = 76 градусов по условию
в прямоугольном треугольнике сmn cумма острых углов смн, мсн равна 90 градусов, то есть угол смн = 90 – угол мсн = 90 – 76 = 14 градусов
треугольник амс равнобедренный, см равна половине гипотенузы , а ам равна половине гипотенузы, так как см - медиана. отсюда следствие, что угол саm равен углу асм по свойству углов при основании равнобедренного треугольника.
угол amc = 180-14=166 градуса
угол сam +угол mca=180-166=14
угол сam =угол mca=14/2=7 градусов
угол сba=90-7=83 градуса
меньшее основание трапеции равно 5 см
большее основание равно 45 см
площадь трапеции равна 375 см2.
Объяснение:
Высоты трапеции BF и CE равны диаметру вписанной окружности.
Прямоугольные треугольники ABF и DCE равны.
По теореме Пифагора из треугольника ECD находим ED:
ED2=CD2−CE2;ED2=252−152;ED=252−152−−−−−−−−√;ED=20 см.
Так как в трапецию вписана окружность, то суммы противоположных сторон трапеции равны.
BC+AD=AB+CD;BC=FE, пустьBC=x, тогдаx+20+x+20=25+25;x=5.
BC= 5 см, AD= 20+5+20 = 45 см.
Площадь трапеции S= BC+AD2⋅EC=5+452⋅15 = 375 см2.
Основания трапеции равны 5 см и 45 см, площадь трапеции равна 375 см2.