2 ЗАДАЧИ ПО ГЕОМЕТРИИ Основания трапеции равны 8 см и 14 см. Найдите отрезки, на диагональ трапеции делит среднюю линию.
2. В трапеции ABCD AB=CD. Высота BH делит основание на два отрезка, меньший из которых равен 5 см. Найдите AD, если её средняя линия равна 9 см.
2) Пусть катет CA = 5x, катет CB = 12x. По теореме Пифагора AВ² = AС²+BC² =25x²+144x²=169x²
169x² = 26²
x=√(26²/169)=26/13 = 2
3)Пусть сторона квадрата равна x. Тогда по теореме Пифагора x² +x² = (4√2)²
2x² = 16*2
x² = 16
x = 4
4) Пусть неизвестная сторона прямоугольника равна x. Тогда по теореме Пифагора x² +8² = 17²
x² = 17²-8²=289 - 64 = 225
x = 15
Тогда периметр прямоугольника равен: P = (15 + 8)*2 = 46
5) Из вершины С опустим высоту CH. Она будет равна стороне трапеции AC. ABCH - прямоугольник. Тогда AH = BC.
HD = AD - BC = 8,5 - 4 = 4,5.
По теореме Пифагора из треугольника HCD получим:
CD² = CH² +HD²
7,5² = CH² + 4,5²
CH² = 7,5²- 4,5² = (7,5-4,5)*(7,5+4,5) = 3*12 = 36
CH = 6
Т. к. AB = CH, то AB = 6.
Допустим что углы 1 и 2 равны. Отложим от луча МN угол PMN,равный углу 2,так чтобы угол PMN и угол 2 были накрест лежащими углами при пересечениии прямых MP и В секущей MN.По построению эти накрест лежащие углы равны, потому MPIIB.Мы получили, что через точку М проходят две прямые (прямые А и MP),паралелельные прямой В. Но это противоречит аксиоме параллельных прямых. Значит наше допущение НЕВЕРНО и угол 1 = 2.