Объяснение: В правильной треугольной пирамиде основанием является правильный треугольник, а вершина проецируется в центр основания.
Обозначим основание пирамиды АВС, её вершину К. проекцию вершины на основание- Н, апофему на грани АКС - КМ.
Искомое сечение - КВМ, которое содержит высоту пирамиды КН, перпендикулярную основанию, ⇒ плоскость ∆ КВМ перпендикулярна АВС, а ВМ и КМ перпендикулярны АС по т.о 3-х перпендикулярах.
КВМ - треугольник. Формула площади треугольника
S=h•a•1/2, где а - сторона треугольника, h- высота, проведенная к ней.
Ѕ(КВМ)=KH•ВМ/2
Все стороны основания равны 6, углы -60°
ВМ=ВС•sin60°=3√3
По т.Пифагора апофема KM=√(AK²-AM²)=√(16-9)=√7
Высоты правильного треугольника - медианы и точкой пересечения делятся в отношении 2:1, считая от вершины. ⇒ МН=ВМ:3=√3
ответ: Ѕ=3√3 м²
Объяснение: В правильной треугольной пирамиде основанием является правильный треугольник, а вершина проецируется в центр основания.
Обозначим основание пирамиды АВС, её вершину К. проекцию вершины на основание- Н, апофему на грани АКС - КМ.
Искомое сечение - КВМ, которое содержит высоту пирамиды КН, перпендикулярную основанию, ⇒ плоскость ∆ КВМ перпендикулярна АВС, а ВМ и КМ перпендикулярны АС по т.о 3-х перпендикулярах.
КВМ - треугольник. Формула площади треугольника
S=h•a•1/2, где а - сторона треугольника, h- высота, проведенная к ней.
Ѕ(КВМ)=KH•ВМ/2
Все стороны основания равны 6, углы -60°
ВМ=ВС•sin60°=3√3
По т.Пифагора апофема KM=√(AK²-AM²)=√(16-9)=√7
Высоты правильного треугольника - медианы и точкой пересечения делятся в отношении 2:1, считая от вершины. ⇒ МН=ВМ:3=√3
По т.Пифагора KH=√(KM²-MH²)=√(7-3)=√4=2
S(KBM)=3√3•2•1/2=3√3 м²
Построим сечение плоскостью через точки PMB
X - пересечение BP и AC
K - пересечение XM и DC
KMB - сечение
PT||BM, QT - искомый отрезок
В плоскости ABC:
проведем NY||BX
CY/YX =CN/NB =1
AY/YX =AN/NP =6/1
CY=YX=x, AY=6x, AC=5x => AC/CX =5/2
проведем NZ||AX
XZ/ZB =CN/NB =1
XZ/ZP =AN/NP =6/1
XZ=ZB=6x, ZP=x, PB=5x => XP/PB =7/5
В плоскости ADC:
AC/CX *XK/KM *MD/DA =1 (т Менелая) => 5/2 *XK/KM *1/2 =1 => XK/KM =4/5
В плоскости сечения KMB:
XT/TM =XP/PB =7/5 => TM/XM =5/12
XK/KM =4/5 => KM/XM =5/9
TM/KM =5/12 *9/5 =3/4 => KT/TM =1/4
QT/BM =KT/KM =1/4 => QT =1/4 a