20 выразить площадь равностороннего n-угольника, вписанного в окружность с радиусом r через площадь образованного в ней круга при 1) n=4, 2) n=плюс бесконечность.
усть скорость первого автомобилиста равна x км/ч, а длина пути равна s км [величина s введена для удобства, она потом сократится]. тогда скорость второго автомобилиста на 1-й половине пути равна x-15 км/ч. время, за которое 1-й автомобилист проехал весь путь равно t1 = s/x.второй автомобилист проехал 1-ю половину пути за время t2_1 = (s/2): (x-15) = s/(2*(x- а вторую половину пути – за время (s/2)/90 =s/180; время всюду измеряется в часах. по условию, t1 = t2_1+t2_2. получаем уравнение:
s/x = s/(2*(x-15)) + s/180
сократим (как и было обещано j ) на s и решим уравнение.
Даны координаты A(7,7,3), В(6,5,8), С(3,5,8) и D(8,4,1).
Находим векторы:
x y z Квадрат Длина ребра
Вектор АВ={xB-xA, yB-yA, zB-zA} -1 -2 5 30 5,4772
Вектор АC={xC-xA, yC-yA, zC-zA} -4 -2 5 45 6,7082.
Их векторное произведение равно: АВ х АС =
= i j k | i j
-1 -2 5 | -1 -2
-4 -2 5 | -4 -2 = -10i - 20j + 2k + 5j + 10i - 8k =
= 0i - 15j - 6k = (0; -15; -6).
Площадь основания (АВС) равна половине модуля:
S(ABC) = (1/2)*√(0 + 225 + 36) = (1/2)*√261 = (3/2)√29 ≈ 8,0778.
Находим вектор AD:
Вектор АD={xD-xA, yD-yA, zD-zA (1 -3 -2) = √ 14 ≈ 3,742.
Находим смешанное произведение:
АВ х АС = (0; -15; -6).
АD = (1; -3; -2).
(АВ х АС) * АD = 0 + 45 + 12 = 57.
Объём пирамиды равен (1/6) смешанного произведения:
V = (1/6)*57 = 57/6 = 19/2 = 9,5 куб.ед.
Теперь определяем искомую высоту из вершины D на АВС.
Н = 3V/S(ABC) = 3*(19/2)/((3/2)√29) = 19√29/29 ≈ 3,528.
усть скорость первого автомобилиста равна x км/ч, а длина пути равна s км [величина s введена для удобства, она потом сократится]. тогда скорость второго автомобилиста на 1-й половине пути равна x-15 км/ч. время, за которое 1-й автомобилист проехал весь путь равно t1 = s/x.второй автомобилист проехал 1-ю половину пути за время t2_1 = (s/2): (x-15) = s/(2*(x- а вторую половину пути – за время (s/2)/90 =s/180; время всюду измеряется в часах. по условию, t1 = t2_1+t2_2. получаем уравнение:
s/x = s/(2*(x-15)) + s/180
сократим (как и было обещано j ) на s и решим уравнение.
1/x = 1/(2*(x-15)) + 1/180 (2)
2*(x-15)*180 = 180*x + 2*(x-15)*x
(x-15)*180 = 90*x + (x-15)*x
180*x – 15*180 = 90*x + x2 – 15*x
180*x – 15*180 = 90*x + x2 – 15*x
x2 + (90-15 – 180)*x +15*180 = 0
x2 — 105*x +15*180 = 0
решим полученное квадратное уравнение.
d = 1052 – 4*15*180 = (7*15)2 – 4*15*(15*12) =
= 152*(72 – 4*12) = 152*(49 – 48) = 152
следовательно, уравнение (2) имеет 2 корня:
x1 = (105+15)/2 = 60; x2 = (105-15)/2 = 45
так как x> 54, то x=60
ответ 60